IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i9p3563-3568.html
   My bibliography  Save this article

Experimental investigation on thermal performance of thermosyphon flat-plate solar water heater with a mantle heat exchanger

Author

Listed:
  • Huang, Jinbao
  • Pu, Shaoxuan
  • Gao, Wenfeng
  • Que, Yi

Abstract

The thermal performance of thermosyphon flat-plate solar water heater with a mantle heat exchanger was investigated to show its applicability in China. The effect on the performance of the collector of using a heat exchanger between the collector and the tank was analyzed. A “heat exchanger penalty factor” for the system was determined and energy balance equation in the system was presented. Outdoor tests of thermal performance of the thermosyphon flat-plate solar water heater with a mantle heat exchanger were taken in Kunming, China. Experimental results show that mean daily efficiency of the thermosyphon flat plate solar water heater with a mantle heat exchanger with 10mm gap can reach up to 50%, which is lower than that of a thermosyphon flat-plate solar water heater without heat exchanger, but higher than that of a all-glass evacuated tubular solar water heater.

Suggested Citation

  • Huang, Jinbao & Pu, Shaoxuan & Gao, Wenfeng & Que, Yi, 2010. "Experimental investigation on thermal performance of thermosyphon flat-plate solar water heater with a mantle heat exchanger," Energy, Elsevier, vol. 35(9), pages 3563-3568.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:9:p:3563-3568
    DOI: 10.1016/j.energy.2010.04.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210002355
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.04.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, L.J. & Zhao, L. & Jing, D.W. & Lu, Y.J. & Yang, H.H. & Bai, B.F. & Zhang, X.M. & Ma, L.J. & Wu, X.M., 2009. "Solar hydrogen production and its development in China," Energy, Elsevier, vol. 34(9), pages 1073-1090.
    2. Tang, Runsheng & Gao, Wenfeng & Yu, Yamei & Chen, Hua, 2009. "Optimal tilt-angles of all-glass evacuated tube solar collectors," Energy, Elsevier, vol. 34(9), pages 1387-1395.
    3. Xiao, Chaofeng & Luo, Huilong & Tang, Runsheng & Zhong, Hao, 2004. "Solar thermal utilization in China," Renewable Energy, Elsevier, vol. 29(9), pages 1549-1556.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koffi, Paul Magloire E. & Koua, Blaise K. & Gbaha, Prosper & Touré, Siaka, 2014. "Thermal performance of a solar water heater with internal exchanger using thermosiphon system in Côte d'Ivoire," Energy, Elsevier, vol. 64(C), pages 187-199.
    2. Khargotra, Rohit & Kumar, Raj & András, Kovács & Fekete, Gusztáv & Singh, Tej, 2022. "Thermo-hydraulic characterization and design optimization of delta-shaped obstacles in solar water heating system using CRITIC-COPRAS approach," Energy, Elsevier, vol. 261(PB).
    3. Shukla, Ruchi & Sumathy, K. & Erickson, Phillip & Gong, Jiawei, 2013. "Recent advances in the solar water heating systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 173-190.
    4. Zhang, Xian & Che, Hongchang, 2013. "Reducing heat loss of fluids in heavy oil wellbore using two-phase closed thermosyphon sucker rod," Energy, Elsevier, vol. 57(C), pages 352-358.
    5. Lee, M.C. & Kuo, C.H. & Wang, F.J., 2016. "Utilizing the building envelope for power generation and conservation," Energy, Elsevier, vol. 97(C), pages 1-10.
    6. Raisul Islam, M. & Sumathy, K. & Ullah Khan, Samee, 2013. "Solar water heating systems and their market trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 1-25.
    7. Sellami, R. & Merzouk, N. Kasbadji & Amirat, M. & Chekrouni, R. & Ouhib, N. & Hadji, A., 2016. "Market potential and development prospects of the solar water heater field in Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 617-625.
    8. Chong, K.K. & Chay, K.G. & Chin, K.H., 2012. "Study of a solar water heater using stationary V-trough collector," Renewable Energy, Elsevier, vol. 39(1), pages 207-215.
    9. Zhani, K. & Ben Bacha, H. & Damak, T., 2011. "Modeling and experimental validation of a humidification–dehumidification desalination unit solar part," Energy, Elsevier, vol. 36(5), pages 3159-3169.
    10. Ayompe, L.M. & Duffy, A. & Mc Keever, M. & Conlon, M. & McCormack, S.J., 2011. "Comparative field performance study of flat plate and heat pipe evacuated tube collectors (ETCs) for domestic water heating systems in a temperate climate," Energy, Elsevier, vol. 36(5), pages 3370-3378.
    11. Cresencio P. Genobiagon Jr & Feliciano B. Alagao, 2019. "Performance Of Low-Cost Dual Circuit Solar Assisted Cabinet Dryer For Green Banana," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 42-45, January.
    12. Nash, Austin L. & Badithela, Apurva & Jain, Neera, 2017. "Dynamic modeling of a sensible thermal energy storage tank with an immersed coil heat exchanger under three operation modes," Applied Energy, Elsevier, vol. 195(C), pages 877-889.
    13. Hossain, M.S. & Saidur, R. & Fayaz, H. & Rahim, N.A. & Islam, M.R. & Ahamed, J.U. & Rahman, M.M., 2011. "Review on solar water heater collector and thermal energy performance of circulating pipe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3801-3812.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabiha, M.A. & Saidur, R. & Mekhilef, Saad & Mahian, Omid, 2015. "Progress and latest developments of evacuated tube solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1038-1054.
    2. Fang, Yiping & Wei, Yanqiang, 2013. "Climate change adaptation on the Qinghai–Tibetan Plateau: The importance of solar energy utilization for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 508-518.
    3. Nzihou, Ange & Flamant, Gilles & Stanmore, Brian, 2012. "Synthetic fuels from biomass using concentrated solar energy – A review," Energy, Elsevier, vol. 42(1), pages 121-131.
    4. Coskun, C. & Oktay, Z. & Dincer, I., 2011. "Estimation of monthly solar radiation distribution for solar energy system analysis," Energy, Elsevier, vol. 36(2), pages 1319-1323.
    5. Yilmaz, Fatih & Balta, M. Tolga & Selbaş, Reşat, 2016. "A review of solar based hydrogen production methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 171-178.
    6. Mao, Chunliu & Li, Muran & Li, Na & Shan, Ming & Yang, Xudong, 2019. "Mathematical model development and optimal design of the horizontal all-glass evacuated tube solar collectors integrated with bottom mirror reflectors for solar energy harvesting," Applied Energy, Elsevier, vol. 238(C), pages 54-68.
    7. Roulleau, T. & Lloyd, C.R., 2008. "International policy issues regarding solar water heating, with a focus on New Zealand," Energy Policy, Elsevier, vol. 36(6), pages 1843-1857, June.
    8. Zang, Haixiang & Cheng, Lilin & Ding, Tao & Cheung, Kwok W. & Wang, Miaomiao & Wei, Zhinong & Sun, Guoqiang, 2019. "Estimation and validation of daily global solar radiation by day of the year-based models for different climates in China," Renewable Energy, Elsevier, vol. 135(C), pages 984-1003.
    9. Ruban, Priya & Sellappa, Kanmani, 2014. "Development and performance of bench-scale reactor for the photocatalytic generation of hydrogen," Energy, Elsevier, vol. 73(C), pages 926-932.
    10. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    11. Zhai, X.Q. & Wang, R.Z., 2008. "Experiences on solar heating and cooling in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1110-1128, May.
    12. Alexandru Şerban & Nicoleta Bărbuţă-Mişu & Nicoleta Ciucescu & Simona Paraschiv & Spiru Paraschiv, 2016. "Economic and Environmental Analysis of Investing in Solar Water Heating Systems," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    13. Wang, R.Z. & Zhai, X.Q., 2010. "Development of solar thermal technologies in China," Energy, Elsevier, vol. 35(11), pages 4407-4416.
    14. Jinpeng Liu & Yun Long & Xiaohua Song, 2017. "A Study on the Conduction Mechanism and Evaluation of the Comprehensive Efficiency of Photovoltaic Power Generation in China," Energies, MDPI, vol. 10(5), pages 1-22, May.
    15. Cheng, Guishi & Luo, Ercheng & Zhao, Ying & Yang, Yihao & Chen, Binbin & Cai, Youcheng & Wang, Xiaoqiang & Dong, Changqing, 2023. "Analysis and prediction of green hydrogen production potential by photovoltaic-powered water electrolysis using machine learning in China," Energy, Elsevier, vol. 284(C).
    16. Zhou, Jin & Wu, Yezheng & Yan, Gang, 2006. "Generation of typical solar radiation year for China," Renewable Energy, Elsevier, vol. 31(12), pages 1972-1985.
    17. Zhao, Ruikai & Zhao, Li & Deng, Shuai & Zheng, Nan, 2015. "Trends in patents for solar thermal utilization in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 852-862.
    18. Liu, Yang & Gui, Qinghua & Xiao, Liye & Zheng, Canyang & Zhang, Youyang & Chen, Fei, 2023. "Photothermal conversion performance based on optimized design of multi-section compound parabolic concentrator," Renewable Energy, Elsevier, vol. 209(C), pages 286-297.
    19. Liu, Zhi-qiang & Xu, Ai-xiang & Lv, Yuan-yuan & Wang, Xiao-xiao, 2012. "Promoting the development of distributed concentrated solar thermal technology in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1174-1179.
    20. Xia, En-Tong & Chen, Fei, 2020. "Analyzing thermal properties of solar evacuated tube arrays coupled with mini-compound parabolic concentrator," Renewable Energy, Elsevier, vol. 153(C), pages 155-167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:9:p:3563-3568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.