IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v97y2018icp1-13.html
   My bibliography  Save this article

The determinants of wind energy growth in the United States: Drivers and barriers to state-level development

Author

Listed:
  • Schumacher, Kim
  • Yang, Zhuoxiang

Abstract

The focus of this paper is to analyse the determinants of wind energy development in the United States and how procedural and regulatory frameworks influence the deployment of wind power facilities. The empirical analysis uses statistical regression models integrating geospatial, macroeconomic and socio-environmental control variables. Using wind penetration as well as wind capacity additions as dependent variable permits a more differentiated analysis of both absolute and relative growth factors. This enables a precise assessment of state-to-state variations in permitting, zoning and siting procedures that wind developers have to clear before being authorised to start construction. Quantifying the number of state-level financial support measures and various permitting and regulatory process stages allowed for a more comprehensive assessment of administrative barriers to wind energy development than prior research studies. The results indicate a partial reversal of previous findings that showed that a high quantity of state-level regulations negatively affects wind capacity additions. Exogenous factors such as the ratio of in-state federal lands, population density, and especially wind energy potential, as well as federal statutes and incentives remain the main drivers of wind capacity additions and overall wind energy penetration. Contrasting prior literature, the influence of localised financial incentives or regulatory approval procedures appears to be minor; therefore streamlining national policies and incentives at the federal level might prove more effective than promoting wind development at the state level. We point out that future research should also examine the role of quality of state-level regulations in addition to quantity.

Suggested Citation

  • Schumacher, Kim & Yang, Zhuoxiang, 2018. "The determinants of wind energy growth in the United States: Drivers and barriers to state-level development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 1-13.
  • Handle: RePEc:eee:rensus:v:97:y:2018:i:c:p:1-13
    DOI: 10.1016/j.rser.2018.08.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118306063
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.08.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geißler, Gesa & Köppel, Johann & Gunther, Pamela, 2013. "Wind energy and environmental assessments – A hard look at two forerunners' approaches: Germany and the United States," Renewable Energy, Elsevier, vol. 51(C), pages 71-78.
    2. Menz, Fredric C. & Vachon, Stephan, 2006. "The effectiveness of different policy regimes for promoting wind power: Experiences from the states," Energy Policy, Elsevier, vol. 34(14), pages 1786-1796, September.
    3. Fischlein, Miriam & Larson, Joel & Hall, Damon M. & Chaudhry, Rumika & Rai Peterson, Tarla & Stephens, Jennie C. & Wilson, Elizabeth J., 2010. "Policy stakeholders and deployment of wind power in the sub-national context: A comparison of four U.S. states," Energy Policy, Elsevier, vol. 38(8), pages 4429-4439, August.
    4. Carley, Sanya, 2009. "State renewable energy electricity policies: An empirical evaluation of effectiveness," Energy Policy, Elsevier, vol. 37(8), pages 3071-3081, August.
    5. Ottinger, Gwen & Hargrave, Timothy J. & Hopson, Eric, 2014. "Procedural justice in wind facility siting: Recommendations for state-led siting processes," Energy Policy, Elsevier, vol. 65(C), pages 662-669.
    6. Brown, Jason P. & Pender, John & Wiser, Ryan & Lantz, Eric & Hoen, Ben, 2012. "Ex post analysis of economic impacts from wind power development in U.S. counties," Energy Economics, Elsevier, vol. 34(6), pages 1743-1754.
    7. Gosens, Jorrit, 2017. "Natural resource endowment is not a strong driver of wind or PV development," Renewable Energy, Elsevier, vol. 113(C), pages 1007-1018.
    8. Marques, António C. & Fuinhas, José A. & Pires Manso, J.R., 2010. "Motivations driving renewable energy in European countries: A panel data approach," Energy Policy, Elsevier, vol. 38(11), pages 6877-6885, November.
    9. Fischlein, Miriam & Wilson, Elizabeth J. & Peterson, Tarla R. & Stephens, Jennie C., 2013. "States of transmission: Moving towards large-scale wind power," Energy Policy, Elsevier, vol. 56(C), pages 101-113.
    10. Shrimali, Gireesh & Kniefel, Joshua, 2011. "Are government policies effective in promoting deployment of renewable electricity resources?," Energy Policy, Elsevier, vol. 39(9), pages 4726-4741, September.
    11. Lu, Xi & Tchou, Jeremy & McElroy, Michael B. & Nielsen, Chris P., 2011. "The impact of Production Tax Credits on the profitable production of electricity from wind in the U.S," Energy Policy, Elsevier, vol. 39(7), pages 4207-4214, July.
    12. Slattery, Michael C. & Lantz, Eric & Johnson, Becky L., 2011. "State and local economic impacts from wind energy projects: Texas case study," Energy Policy, Elsevier, vol. 39(12), pages 7930-7940.
    13. Plümper, Thomas & Troeger, Vera E., 2007. "Efficient Estimation of Time-Invariant and Rarely Changing Variables in Finite Sample Panel Analyses with Unit Fixed Effects," Political Analysis, Cambridge University Press, vol. 15(2), pages 124-139, April.
    14. Tabassum-Abbasi, & Premalatha, M. & Abbasi, Tasneem & Abbasi, S.A., 2014. "Wind energy: Increasing deployment, rising environmental concerns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 270-288.
    15. Mulvaney, Kate K. & Woodson, Patrick & Prokopy, Linda Stalker, 2013. "A tale of three counties: Understanding wind development in the rural Midwestern United States," Energy Policy, Elsevier, vol. 56(C), pages 322-330.
    16. Hitaj, Claudia, 2013. "Wind power development in the United States," Journal of Environmental Economics and Management, Elsevier, vol. 65(3), pages 394-410.
    17. Yin, Haitao & Powers, Nicholas, 2010. "Do state renewable portfolio standards promote in-state renewable generation[glottal stop]," Energy Policy, Elsevier, vol. 38(2), pages 1140-1149, February.
    18. Coley, Jonathan S. & Hess, David J., 2012. "Green energy laws and Republican legislators in the United States," Energy Policy, Elsevier, vol. 48(C), pages 576-583.
    19. Aguirre, Mariana & Ibikunle, Gbenga, 2014. "Determinants of renewable energy growth: A global sample analysis," Energy Policy, Elsevier, vol. 69(C), pages 374-384.
    20. Painuly, J.P, 2001. "Barriers to renewable energy penetration; a framework for analysis," Renewable Energy, Elsevier, vol. 24(1), pages 73-89.
    21. Prasad, Monica & Munch, Steven, 2012. "State-level renewable electricity policies and reductions in carbon emissions," Energy Policy, Elsevier, vol. 45(C), pages 237-242.
    22. Bird, Lori & Bolinger, Mark & Gagliano, Troy & Wiser, Ryan & Brown, Matthew & Parsons, Brian, 2005. "Policies and market factors driving wind power development in the United States," Energy Policy, Elsevier, vol. 33(11), pages 1397-1407, July.
    23. Shrimali, Gireesh & Lynes, Melissa & Indvik, Joe, 2015. "Wind energy deployment in the U.S.: An empirical analysis of the role of federal and state policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 796-806.
    24. Dai, Kaoshan & Bergot, Anthony & Liang, Chao & Xiang, Wei-Ning & Huang, Zhenhua, 2015. "Environmental issues associated with wind energy – A review," Renewable Energy, Elsevier, vol. 75(C), pages 911-921.
    25. Jeff Tollefson, 2017. "Fears rise for US climate report as Trump officials take reins," Nature, Nature, vol. 548(7665), pages 15-16, August.
    26. Plümper, Thomas & Troeger, Vera E., 2011. "Fixed-Effects Vector Decomposition: Properties, Reliability, and Instruments," Political Analysis, Cambridge University Press, vol. 19(2), pages 147-164, April.
    27. Delmas, Magali A. & Montes-Sancho, Maria J., 2011. "U.S. state policies for renewable energy: Context and effectiveness," Energy Policy, Elsevier, vol. 39(5), pages 2273-2288, May.
    28. Barradale, Merrill Jones, 2010. "Impact of public policy uncertainty on renewable energy investment: Wind power and the production tax credit," Energy Policy, Elsevier, vol. 38(12), pages 7698-7709, December.
    29. Stokes, Leah C. & Breetz, Hanna L., 2018. "Politics in the U.S. energy transition: Case studies of solar, wind, biofuels and electric vehicles policy," Energy Policy, Elsevier, vol. 113(C), pages 76-86.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Namahoro, J.P. & Wu, Q. & Su, H., 2023. "Wind energy, industrial-economic development and CO2 emissions nexus: Do droughts matter?," Energy, Elsevier, vol. 278(PA).
    2. Alemzero, David & Acheampong, Theophilus & Huaping, Sun, 2021. "Prospects of wind energy deployment in Africa: Technical and economic analysis," Renewable Energy, Elsevier, vol. 179(C), pages 652-666.
    3. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Li, Gang & Liu, Lingjun, 2022. "Impacts of different wind and solar power penetrations on cascade hydroplants operation," Renewable Energy, Elsevier, vol. 182(C), pages 227-244.
    4. Zapata, Sebastian & Castaneda, Monica & Herrera, Milton M. & Dyner, Isaac, 2023. "Investigating the concurrence of transmission grid expansion and the dissemination of renewables," Energy, Elsevier, vol. 276(C).
    5. Shafiullah, Muhammad & Miah, Mohammad Dulal & Alam, Md Samsul & Atif, Muhammad, 2021. "Does economic policy uncertainty affect renewable energy consumption?," Renewable Energy, Elsevier, vol. 179(C), pages 1500-1521.
    6. John Dorrell & Keunjae Lee, 2021. "The Price of Wind: An Empirical Analysis of the Relationship between Wind Energy and Electricity Price across the Residential, Commercial, and Industrial Sectors," Energies, MDPI, vol. 14(12), pages 1-21, June.
    7. Gaigalis, Vygandas & Katinas, Vladislovas, 2020. "Analysis of the renewable energy implementation and prediction prospects in compliance with the EU policy: A case of Lithuania," Renewable Energy, Elsevier, vol. 151(C), pages 1016-1027.
    8. Schumacher, Kim, 2019. "Approval procedures for large-scale renewable energy installations: Comparison of national legal frameworks in Japan, New Zealand, the EU and the US," Energy Policy, Elsevier, vol. 129(C), pages 139-152.
    9. Bayulgen, Oksan & Atkinson-Palombo, Carol & Buchanan, Mary & Scruggs, Lyle, 2021. "Tilting at windmills? Electoral repercussions of wind turbine projects in Minnesota," Energy Policy, Elsevier, vol. 159(C).
    10. Hileman, Jacob D. & Angst, Mario & Scott, Tyler A. & Sundström, Emma, 2021. "Recycled text and risk communication in natural gas pipeline environmental impact assessments," Energy Policy, Elsevier, vol. 156(C).
    11. Shang, Yunfeng & Han, Ding & Gozgor, Giray & Mahalik, Mantu Kumar & Sahoo, Bimal Kishore, 2022. "The impact of climate policy uncertainty on renewable and non-renewable energy demand in the United States," Renewable Energy, Elsevier, vol. 197(C), pages 654-667.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gosens, Jorrit & Hedenus, Fredrik & Sandén, Björn A., 2017. "Faster market growth of wind and PV in late adopters due to global experience build-up," Energy, Elsevier, vol. 131(C), pages 267-278.
    2. Polzin, Friedemann & Egli, Florian & Steffen, Bjarne & Schmidt, Tobias S., 2019. "How do policies mobilize private finance for renewable energy?—A systematic review with an investor perspective," Applied Energy, Elsevier, vol. 236(C), pages 1249-1268.
    3. Marques, António Cardoso & Fuinhas, José Alberto & Pereira, Diogo Santos, 2019. "The dynamics of the short and long-run effects of public policies supporting renewable energy: A comparative study of installed capacity and electricity generation," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 188-206.
    4. Consolación Quintana-Rojo & Fernando-Evaristo Callejas-Albiñana & Miguel-Ángel Tarancón & Isabel Martínez-Rodríguez, 2020. "Econometric Studies on the Development of Renewable Energy Sources to Support the European Union 2020–2030 Climate and Energy Framework: A Critical Appraisal," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    5. Nicolini, Marcella & Tavoni, Massimo, 2017. "Are renewable energy subsidies effective? Evidence from Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 412-423.
    6. kos Hamburger & G bor Harangoz, 2018. "Factors Affecting the Evolution of Renewable Electricity Generating Capacities: A Panel Data Analysis of European Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 161-172.
    7. Shrimali, Gireesh & Lynes, Melissa & Indvik, Joe, 2015. "Wind energy deployment in the U.S.: An empirical analysis of the role of federal and state policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 796-806.
    8. Basher, Syed Abul & Masini, Andrea & Aflaki, Sam, 2015. "Time series properties of the renewable energy diffusion process: Implications for energy policy design and assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1680-1692.
    9. Escoffier, Margaux & Hache, Emmanuel & Mignon, Valérie & Paris, Anthony, 2021. "Determinants of solar photovoltaic deployment in the electricity mix: Do oil prices really matter?," Energy Economics, Elsevier, vol. 97(C).
    10. Thomas, Pinky & Khurana, Ritika & Etienne, Xiaoli L. & Collins, Alan R., 2023. "The Impacts of State Policies on Renewable Energy Generation Capacity: A County-Level Spatial Panel Analysis," 2023 Annual Meeting, July 23-25, Washington D.C. 335717, Agricultural and Applied Economics Association.
    11. Sanya Carley & Elizabeth Baldwin & Lauren M. MacLean & Jennifer N. Brass, 2017. "Global Expansion of Renewable Energy Generation: An Analysis of Policy Instruments," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(2), pages 397-440, October.
    12. Thapar, Sapan & Sharma, Seema & Verma, Ashu, 2018. "Key determinants of wind energy growth in India: Analysis of policy and non-policy factors," Energy Policy, Elsevier, vol. 122(C), pages 622-638.
    13. Polzin, Friedemann & Migendt, Michael & Täube, Florian A. & von Flotow, Paschen, 2015. "Public policy influence on renewable energy investments—A panel data study across OECD countries," Energy Policy, Elsevier, vol. 80(C), pages 98-111.
    14. Karen Maguire, 2016. "What’s powering wind? The effect of the U.S. state renewable energy policies on wind capacity (1994–2012)," Applied Economics, Taylor & Francis Journals, vol. 48(58), pages 5717-5730, December.
    15. Ebers Broughel, Anna, 2019. "Impact of state policies on generating capacity for production of electricity and combined heat and power from forest biomass in the United States," Renewable Energy, Elsevier, vol. 134(C), pages 1163-1172.
    16. Sugimoto, Kota, 2019. "Does transmission unbundling increase wind power generation in the United States?," Energy Policy, Elsevier, vol. 125(C), pages 307-316.
    17. Karen Maguire & Abdul Munasib, 2013. "Do Renewables Portfolio Standards Increase Electricity Prices? A Synthetic Control Approach," Economics Working Paper Series 1403, Oklahoma State University, Department of Economics and Legal Studies in Business, revised Aug 2013.
    18. Gosens, Jorrit, 2017. "Natural resource endowment is not a strong driver of wind or PV development," Renewable Energy, Elsevier, vol. 113(C), pages 1007-1018.
    19. Karen Maguire & Abdul Munasib, 2015. "The Disparate Influence of State Renewable Portfolio Standards (RPS) on U.S. Renewable Electricity Generation Capacity," Economics Working Paper Series 1502, Oklahoma State University, Department of Economics and Legal Studies in Business, revised Feb 2015.
    20. Daniel J Pastor, 2020. "The effects of renewables portfolio standards on renewable energy generation," Economics Bulletin, AccessEcon, vol. 40(3), pages 2121-2133.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:97:y:2018:i:c:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.