IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v80y2017icp1201-1216.html
   My bibliography  Save this article

Improving biohydrogen productivity by microbial dark- and photo-fermentations: Novel data and future approaches

Author

Listed:
  • Trchounian, Karen
  • Sawers, R. Gary
  • Trchounian, Armen

Abstract

Hydrogen (H2) is an effective, environmentally friendly and renewable source of fuel that can be produced during dark- and photo-fermentation by different facultative and obligate anaerobic and purple bacteria and microalgae. This product is known as biohydrogen. It has the advantage of variable yield at low temperature (for mesophiles growing best at moderate temperature) and relatively low production cost, if compared with thermochemical methods. To develop fermentative H2 production biotechnology using cheap carbonaceous by-products and utilization of organic wastes, the selection or construction of effective bacterial strains and optimization of technology process conditions are required. Here we review recent new data that have been obtained with Escherichia coli, Clostridium beijerinskii, Rhodobacter sphaeroides and other bacteria. Activities of [Ni-Fe]-hydrogenases of dark-fermentative bacteria and [Mo]-nitrogenase and [Ni-Fe]-hydrogenase of photo-fermentative species have been examined after growth with different carbon sources, using pure cultures, as well as co-culture and mixed-cultures technologies. Importantly, H2 production from cheap and readily available substrates like crude glycerol or different industrial, agricultural and other carbon-based wastes by bacteria is a sustainable technology. Consequently further approaches and strain-improvement could increase H2 production in a cost-effective way, and they will lead to both small- and large-scale H2 production. Moreover, they will provide significant economic and environmental benefits for renewable and sustainable energy supply in the near future.

Suggested Citation

  • Trchounian, Karen & Sawers, R. Gary & Trchounian, Armen, 2017. "Improving biohydrogen productivity by microbial dark- and photo-fermentations: Novel data and future approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1201-1216.
  • Handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:1201-1216
    DOI: 10.1016/j.rser.2017.05.149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117307852
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gabrielyan, Lilit & Sargsyan, Harutyun & Hakobyan, Lilit & Trchounian, Armen, 2014. "Regulation of hydrogen photoproduction in Rhodobacter sphaeroides batch culture by external oxidizers and reducers," Applied Energy, Elsevier, vol. 131(C), pages 20-25.
    2. Shah, A.T. & Favaro, L. & Alibardi, L. & Cagnin, L. & Sandon, A. & Cossu, R. & Casella, S. & Basaglia, M., 2016. "Bacillus sp. strains to produce bio-hydrogen from the organic fraction of municipal solid waste," Applied Energy, Elsevier, vol. 176(C), pages 116-124.
    3. Hideaki Ogata & Koji Nishikawa & Wolfgang Lubitz, 2015. "Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase," Nature, Nature, vol. 520(7548), pages 571-574, April.
    4. A. F. Hof & M. G. J. Elzen & A. Mendoza Beltran, 2016. "The EU 40 % greenhouse gas emission reduction target by 2030 in perspective," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 16(3), pages 375-392, June.
    5. Ghimire, Anish & Frunzo, Luigi & Pirozzi, Francesco & Trably, Eric & Escudie, Renaud & Lens, Piet N.L. & Esposito, Giovanni, 2015. "A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products," Applied Energy, Elsevier, vol. 144(C), pages 73-95.
    6. Kumar, G. & Bakonyi, P. & Periyasamy, S. & Kim, S.H. & Nemestóthy, N. & Bélafi-Bakó, K., 2015. "Lignocellulose biohydrogen: Practical challenges and recent progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 728-737.
    7. He, Quan (Sophia) & McNutt, Josiah & Yang, Jie, 2017. "Utilization of the residual glycerol from biodiesel production for renewable energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 63-76.
    8. Marone, Antonella & Izzo, Giulio & Mentuccia, Luciano & Massini, Giulia & Paganin, Patrizia & Rosa, Silvia & Varrone, Cristiano & Signorini, Antonella, 2014. "Vegetable waste as substrate and source of suitable microflora for bio-hydrogen production," Renewable Energy, Elsevier, vol. 68(C), pages 6-13.
    9. Passos, Fabiana & Solé, Maria & García, Joan & Ferrer, Ivet, 2013. "Biogas production from microalgae grown in wastewater: Effect of microwave pretreatment," Applied Energy, Elsevier, vol. 108(C), pages 168-175.
    10. Patel, Anil Kumar & Vaisnav, Neha & Mathur, Anshu & Gupta, Ravi & Tuli, Deepak Kumar, 2016. "Whey waste as potential feedstock for biohydrogen production," Renewable Energy, Elsevier, vol. 98(C), pages 221-225.
    11. Wang, Yiming & Zhou, Peng & Tong, Jin & Gao, Rui, 2016. "Advances in the genetic modification of Rhodobacter sphaeroides to improve hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1312-1318.
    12. Trchounian, Karen & Trchounian, Armen, 2015. "Hydrogen production from glycerol by Escherichia coli and other bacteria: An overview and perspectives," Applied Energy, Elsevier, vol. 156(C), pages 174-184.
    13. Kumar, Gopal Ramesh & Chowdhary, Nupoor, 2016. "Biotechnological and bioinformatics approaches for augmentation of biohydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1194-1206.
    14. Trchounian, Karen & Poladyan, Anna & Trchounian, Armen, 2016. "Optimizing strategy for Escherichia coli growth and hydrogen production during glycerol fermentation in batch culture: Effects of some heavy metal ions and their mixtures," Applied Energy, Elsevier, vol. 177(C), pages 335-340.
    15. Azwar, M.Y. & Hussain, M.A. & Abdul-Wahab, A.K., 2014. "Development of biohydrogen production by photobiological, fermentation and electrochemical processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 158-173.
    16. Trchounian, Karen & Trchounian, Armen, 2015. "Escherichia coli hydrogen gas production from glycerol: Effects of external formate," Renewable Energy, Elsevier, vol. 83(C), pages 345-351.
    17. Pattanamanee, Walailak & Chisti, Yusuf & Choorit, Wanna, 2015. "Photofermentive hydrogen production by Rhodobacter sphaeroides S10 using mixed organic carbon: Effects of the mixture composition," Applied Energy, Elsevier, vol. 157(C), pages 245-254.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baeyens, Jan & Zhang, Huili & Nie, Jiapei & Appels, Lise & Dewil, Raf & Ansart, Renaud & Deng, Yimin, 2020. "Reviewing the potential of bio-hydrogen production by fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Karim, Ahasanul & Islam, M. Amirul & Mishra, Puranjan & Yousuf, Abu & Faizal, Che Ku Mohammad & Khan, Md. Maksudur Rahman, 2021. "Technical difficulties of mixed culture driven waste biomass-based biohydrogen production: Sustainability of current pretreatment techniques and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. de Sá, Lívian Ribeiro Vasconcelos & Faber, Mariana de Oliveira & da Silva, Ayla Sant’Ana & Cammarota, Magali Christe & Ferreira-Leitão, Viridiana Santana, 2020. "Biohydrogen production using xylose or xylooligosaccharides derived from sugarcane bagasse obtained by hydrothermal and acid pretreatments," Renewable Energy, Elsevier, vol. 146(C), pages 2408-2415.
    4. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    5. Cieciura-Włoch, Weronika & Borowski, Sebastian & Otlewska, Anna, 2020. "Biohydrogen production from fruit and vegetable waste, sugar beet pulp and corn silage via dark fermentation," Renewable Energy, Elsevier, vol. 153(C), pages 1226-1237.
    6. Yiyang Liu & Jingluo Min & Xingyu Feng & Yue He & Jinze Liu & Yixiao Wang & Jun He & Hainam Do & Valérie Sage & Gang Yang & Yong Sun, 2020. "A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance," Energies, MDPI, vol. 13(10), pages 1-27, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trchounian, Karen & Trchounian, Armen, 2015. "Hydrogen production from glycerol by Escherichia coli and other bacteria: An overview and perspectives," Applied Energy, Elsevier, vol. 156(C), pages 174-184.
    2. Poladyan, Anna & Trchounian, Karen & Vassilian, Anait & Trchounian, Armen, 2018. "Hydrogen production by Escherichia coli using brewery waste: Optimal pretreatment of waste and role of different hydrogenases," Renewable Energy, Elsevier, vol. 115(C), pages 931-936.
    3. Bakonyi, Péter & Buitrón, Germán & Valdez-Vazquez, Idania & Nemestóthy, Nándor & Bélafi-Bakó, Katalin, 2017. "A novel gas separation integrated membrane bioreactor to evaluate the impact of self-generated biogas recycling on continuous hydrogen fermentation," Applied Energy, Elsevier, vol. 190(C), pages 813-823.
    4. Trchounian, Karen & Poladyan, Anna & Trchounian, Armen, 2016. "Optimizing strategy for Escherichia coli growth and hydrogen production during glycerol fermentation in batch culture: Effects of some heavy metal ions and their mixtures," Applied Energy, Elsevier, vol. 177(C), pages 335-340.
    5. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    6. Sołowski, Gaweł & Shalaby, Marwa.S. & Abdallah, Heba & Shaban, Ahmed.M. & Cenian, Adam, 2018. "Production of hydrogen from biomass and its separation using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3152-3167.
    7. Sivagurunathan, Periyasamy & Kumar, Gopalakrishnan & Mudhoo, Ackmez & Rene, Eldon R. & Saratale, Ganesh Dattatraya & Kobayashi, Takuro & Xu, Kaiqin & Kim, Sang-Hyoun & Kim, Dong-Hoon, 2017. "Fermentative hydrogen production using lignocellulose biomass: An overview of pre-treatment methods, inhibitor effects and detoxification experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 28-42.
    8. Shah, A.T. & Favaro, L. & Alibardi, L. & Cagnin, L. & Sandon, A. & Cossu, R. & Casella, S. & Basaglia, M., 2016. "Bacillus sp. strains to produce bio-hydrogen from the organic fraction of municipal solid waste," Applied Energy, Elsevier, vol. 176(C), pages 116-124.
    9. Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
    10. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    11. Trad, Zaineb & Fontaine, Jean-Pierre & Larroche, Christian & Vial, Christophe, 2016. "Multiscale mixing analysis and modeling of biohydrogen production by dark fermentation," Renewable Energy, Elsevier, vol. 98(C), pages 264-282.
    12. Pattanamanee, Walailak & Chisti, Yusuf & Choorit, Wanna, 2015. "Photofermentive hydrogen production by Rhodobacter sphaeroides S10 using mixed organic carbon: Effects of the mixture composition," Applied Energy, Elsevier, vol. 157(C), pages 245-254.
    13. Lavagnolo, Maria Cristina & Girotto, Francesca & Rafieenia, Razieh & Danieli, Luciano & Alibardi, Luca, 2018. "Two-stage anaerobic digestion of the organic fraction of municipal solid waste – Effects of process conditions during batch tests," Renewable Energy, Elsevier, vol. 126(C), pages 14-20.
    14. Palomo-Briones, Rodolfo & Razo-Flores, Elías & Bernet, Nicolas & Trably, Eric, 2017. "Dark-fermentative biohydrogen pathways and microbial networks in continuous stirred tank reactors: Novel insights on their control," Applied Energy, Elsevier, vol. 198(C), pages 77-87.
    15. Anita Šalić & Bruno Zelić, 2022. "A Game Changer: Microfluidic Technology for Enhancing Biohydrogen Production—Small Size for Great Performance," Energies, MDPI, vol. 15(19), pages 1-22, September.
    16. Sanjeet Mehariya & Antonella Signorini & Antonella Marone & Silvia Rosa, 2023. "Simultaneous Hydrogen and Ethanol Production from Crude Glycerol by a Microbial Consortium Using Fed-Batch Fermentation," Energies, MDPI, vol. 16(11), pages 1-18, June.
    17. Majidian, Parastoo & Tabatabaei, Meisam & Zeinolabedini, Mehrshad & Naghshbandi, Mohammad Pooya & Chisti, Yusuf, 2018. "Metabolic engineering of microorganisms for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3863-3885.
    18. Yiyang Liu & Jingluo Min & Xingyu Feng & Yue He & Jinze Liu & Yixiao Wang & Jun He & Hainam Do & Valérie Sage & Gang Yang & Yong Sun, 2020. "A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance," Energies, MDPI, vol. 13(10), pages 1-27, May.
    19. Shao, Weilan & Wang, Qiang & Rupani, Parveen Fatemeh & Krishnan, Santhana & Ahmad, Fiaz & Rezania, Shahabaldin & Rashid, Muhammad Adnan & Sha, Chong & Md Din, Mohd Fadhil, 2020. "Biohydrogen production via thermophilic fermentation: A prospective application of Thermotoga species," Energy, Elsevier, vol. 197(C).
    20. Elbeshbishy, Elsayed & Dhar, Bipro Ranjan & Nakhla, George & Lee, Hyung-Sool, 2017. "A critical review on inhibition of dark biohydrogen fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 656-668.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:1201-1216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.