IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v131y2014icp20-25.html
   My bibliography  Save this article

Regulation of hydrogen photoproduction in Rhodobacter sphaeroides batch culture by external oxidizers and reducers

Author

Listed:
  • Gabrielyan, Lilit
  • Sargsyan, Harutyun
  • Hakobyan, Lilit
  • Trchounian, Armen

Abstract

Photo-fermentative production of hydrogen (H2) by purple bacterium Rhodobacter sphaeroides MDC6521 from Armenian mineral springs and its regulation by external reducers and oxidizers have been investigated. Reducers such as dl-dithiothreitol (DTT) and dithionite suppress bacterial growth but enhance H2 yield of R. sphaeroides, whereas oxidizer ferricyanide inhibits both processes. The effect of DTT on DCCD-inhibited FoF1-ATPase activity of R. sphaeroides membrane vesicles has been analyzed too. DTT increases the DCCD-inhibited ATPase activity. Thus, more negative values of Eh by addition of DTT might regulate FoF1-ATPase activity. The participation of the ATPase in redox sensing under photo-fermentative H2 production is suggested. This enzyme might be a target, having a significant role in these processes of purple bacteria.

Suggested Citation

  • Gabrielyan, Lilit & Sargsyan, Harutyun & Hakobyan, Lilit & Trchounian, Armen, 2014. "Regulation of hydrogen photoproduction in Rhodobacter sphaeroides batch culture by external oxidizers and reducers," Applied Energy, Elsevier, vol. 131(C), pages 20-25.
  • Handle: RePEc:eee:appene:v:131:y:2014:i:c:p:20-25
    DOI: 10.1016/j.apenergy.2014.06.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914006011
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.06.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yanting & Fan, Xiaolei & Yang, Zhiman & Wang, Huanyu & Yang, Dawei & Guo, Rongbo, 2012. "Characterization of H2 photoproduction by a new marine green alga, Platymonas helgolandica var. tsingtaoensis," Applied Energy, Elsevier, vol. 92(C), pages 38-43.
    2. Mohanakrishna, G. & Mohan, S. Venkata, 2013. "Multiple process integrations for broad perspective analysis of fermentative H2 production from wastewater treatment: Technical and environmental considerations," Applied Energy, Elsevier, vol. 107(C), pages 244-254.
    3. He, Yan-Rong & Yan, Fang-Fang & Yu, Han-Qing & Yuan, Shi-Jie & Tong, Zhong-Hua & Sheng, Guo-Ping, 2014. "Hydrogen production in a light-driven photoelectrochemical cell," Applied Energy, Elsevier, vol. 113(C), pages 164-168.
    4. Akroum-Amrouche, Dahbia & Abdi, Nadia & Lounici, Hakim & Mameri, Nabil, 2011. "Effect of physico-chemical parameters on biohydrogen production and growth characteristics by batch culture of Rhodobacter sphaeroides CIP 60.6," Applied Energy, Elsevier, vol. 88(6), pages 2130-2135, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Poladyan, Anna & Trchounian, Karen & Vassilian, Anait & Trchounian, Armen, 2018. "Hydrogen production by Escherichia coli using brewery waste: Optimal pretreatment of waste and role of different hydrogenases," Renewable Energy, Elsevier, vol. 115(C), pages 931-936.
    2. Trchounian, Karen & Poladyan, Anna & Trchounian, Armen, 2016. "Optimizing strategy for Escherichia coli growth and hydrogen production during glycerol fermentation in batch culture: Effects of some heavy metal ions and their mixtures," Applied Energy, Elsevier, vol. 177(C), pages 335-340.
    3. Trchounian, Karen & Sawers, R. Gary & Trchounian, Armen, 2017. "Improving biohydrogen productivity by microbial dark- and photo-fermentations: Novel data and future approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1201-1216.
    4. Trchounian, Karen & Trchounian, Armen, 2015. "Hydrogen production from glycerol by Escherichia coli and other bacteria: An overview and perspectives," Applied Energy, Elsevier, vol. 156(C), pages 174-184.
    5. Trchounian, Karen & Trchounian, Armen, 2015. "Escherichia coli hydrogen gas production from glycerol: Effects of external formate," Renewable Energy, Elsevier, vol. 83(C), pages 345-351.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bharathiraja, B. & Chakravarthy, M. & Ranjith Kumar, R. & Yogendran, D. & Yuvaraj, D. & Jayamuthunagai, J. & Praveen Kumar, R. & Palani, S., 2015. "Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 634-653.
    2. Zhang, Yanting & Fan, Xiaolei & Yang, Zhiman & Wang, Huanyu & Yang, Dawei & Guo, Rongbo, 2012. "Characterization of H2 photoproduction by a new marine green alga, Platymonas helgolandica var. tsingtaoensis," Applied Energy, Elsevier, vol. 92(C), pages 38-43.
    3. Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).
    4. Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Liu, Xiaolong, 2014. "Lean burn performance of a hydrogen-blended gasoline engine at the wide open throttle condition," Applied Energy, Elsevier, vol. 136(C), pages 43-50.
    5. Kwak, Byeong Sub & Chae, Jinho & Kang, Misook, 2014. "Design of a photochemical water electrolysis system based on a W-typed dye-sensitized serial solar module for high hydrogen production," Applied Energy, Elsevier, vol. 125(C), pages 189-196.
    6. Yang, Jinxin & Ji, Changwei & Wang, Shuofeng & Wang, Du & Ma, Zedong & Zhang, Boya, 2018. "Numerical investigation on the mixture formation and combustion processes of a gasoline rotary engine with direct injected hydrogen enrichment," Applied Energy, Elsevier, vol. 224(C), pages 34-41.
    7. Lazaro, Carolina Zampol & Varesche, Maria Bernadete Amâncio & Silva, Edson Luiz, 2015. "Effect of inoculum concentration, pH, light intensity and lighting regime on hydrogen production by phototrophic microbial consortium," Renewable Energy, Elsevier, vol. 75(C), pages 1-7.
    8. Oncel, Suphi S., 2013. "Microalgae for a macroenergy world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 241-264.
    9. Song, Chunfeng & Liu, Qingling & Ji, Na & Kansha, Yasuki & Tsutsumi, Atsushi, 2015. "Optimization of steam methane reforming coupled with pressure swing adsorption hydrogen production process by heat integration," Applied Energy, Elsevier, vol. 154(C), pages 392-401.
    10. Nikhil, G.N. & Venkata Subhash, G. & Yeruva, Dileep Kumar & Venkata Mohan, S., 2015. "Synergistic yield of dual energy forms through biocatalyzed electrofermentation of waste: Stoichiometric analysis of electron and carbon distribution," Energy, Elsevier, vol. 88(C), pages 281-291.
    11. Fariha Kanwal & Angel A. J. Torriero, 2022. "Biohydrogen—A Green Fuel for Sustainable Energy Solutions," Energies, MDPI, vol. 15(20), pages 1-20, October.
    12. Fischer, Fabian, 2018. "Photoelectrode, photovoltaic and photosynthetic microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 16-27.
    13. Tanvir, Rahamat Ullah & Zhang, Jianying & Canter, Timothy & Chen, Dick & Lu, Jingrang & Hu, Zhiqiang, 2021. "Harnessing solar energy using phototrophic microorganisms: A sustainable pathway to bioenergy, biomaterials, and environmental solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    14. Prabakar, Desika & Manimudi, Varshini T. & Suvetha K, Subha & Sampath, Swetha & Mahapatra, Durga Madhab & Rajendran, Karthik & Pugazhendhi, Arivalagan, 2018. "Advanced biohydrogen production using pretreated industrial waste: Outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 306-324.
    15. Marcin Dębowski & Magda Dudek & Marcin Zieliński & Anna Nowicka & Joanna Kazimierowicz, 2021. "Microalgal Hydrogen Production in Relation to Other Biomass-Based Technologies—A Review," Energies, MDPI, vol. 14(19), pages 1-27, September.
    16. Rarotra, Saptak & Shahid, Shaik & De, Mahuya & Mandal, Tapas Kumar & Bandyopadhyay, Dipankar, 2021. "Graphite/RGO coated paper μ-electrolyzers for production and separation of hydrogen and oxygen," Energy, Elsevier, vol. 228(C).
    17. Liang, Dawei & Han, Guodong & Zhang, Yongjia & Rao, Siyuan & Lu, Shanfu & Wang, Haining & Xiang, Yan, 2016. "Efficient H2 production in a microbial photoelectrochemical cell with a composite Cu2O/NiOx photocathode under visible light," Applied Energy, Elsevier, vol. 168(C), pages 544-549.
    18. Gao, Yibo & Mao, Yanpeng & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong & Chen, Guifang & Chen, Shouyan, 2020. "Efficient generation of hydrogen by two-step thermochemical cycles: Successive thermal reduction and water splitting reactions using equal-power microwave irradiation and a high entropy material," Applied Energy, Elsevier, vol. 279(C).
    19. Wang, Hongtao & Yang, Yi & Keller, Arturo A. & Li, Xiang & Feng, Shijin & Dong, Ya-nan & Li, Fengting, 2016. "Comparative analysis of energy intensity and carbon emissions in wastewater treatment in USA, Germany, China and South Africa," Applied Energy, Elsevier, vol. 184(C), pages 873-881.
    20. Sarkar, Omprakash & Butti, Sai Kishore & Venkata Mohan, S., 2017. "Acidogenesis driven by hydrogen partial pressure towards bioethanol production through fatty acids reduction," Energy, Elsevier, vol. 118(C), pages 425-434.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:131:y:2014:i:c:p:20-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.