IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v31y2014icp158-173.html
   My bibliography  Save this article

Development of biohydrogen production by photobiological, fermentation and electrochemical processes: A review

Author

Listed:
  • Azwar, M.Y.
  • Hussain, M.A.
  • Abdul-Wahab, A.K.

Abstract

Production of biohydrogen has the potential to be a renewable alternative to current technologies. There are varieties of technologies for biological hydrogen production mechanisms including biophotolysis, photo fermentation, dark fermentation and hybrid biohydrogen production by electrochemical processes. In these studies, a review on the recent developments of biohydrogen production is presented. First, the theoretical principles of biophotolysis by cyanobacteria and green micro algae, as well as direct and indirect of biophotolysis process on hydrogen production are described. Secondly, practical aspects and fundamental of biological hydrogen production processes by photo and dark fermentation are reviewed. This work also involved comparison of the maximum H2 yield, bacterial strains, operating condition, suitable substrates, and mathematical models for fermentative hydrogen production. A new hybrid biological hydrogen production processes by using the electrochemical process is then proposed. This study can also be used to improve the basic and current knowledge about the performance of the biophotolysis, fermentative and electrochemical process in producing hydrogen gas as the alternate fuel.

Suggested Citation

  • Azwar, M.Y. & Hussain, M.A. & Abdul-Wahab, A.K., 2014. "Development of biohydrogen production by photobiological, fermentation and electrochemical processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 158-173.
  • Handle: RePEc:eee:rensus:v:31:y:2014:i:c:p:158-173
    DOI: 10.1016/j.rser.2013.11.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113007715
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.11.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kan, Eunsung, 2013. "Effects of pretreatments of anaerobic sludge and culture conditions on hydrogen productivity in dark anaerobic fermentation," Renewable Energy, Elsevier, vol. 49(C), pages 227-231.
    2. Peilei Fan, 2009. ". By Yu Zhou," Economic Geography, Taylor & Francis Journals, vol. 85(3), pages 342-344, July.
    3. Jonathan Woodward & Mark Orr & Kimberley Cordray & Elias Greenbaum, 2000. "Enzymatic production of biohydrogen," Nature, Nature, vol. 405(6790), pages 1014-1015, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2015. "Solar hydrogen hybrid energy systems for off-grid electricity supply: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1791-1808.
    2. Giwa, Adewale & Adeyemi, Idowu & Dindi, Abdallah & Lopez, Celia García-Baños & Lopresto, Catia Giovanna & Curcio, Stefano & Chakraborty, Sudip, 2018. "Techno-economic assessment of the sustainability of an integrated biorefinery from microalgae and Jatropha: A review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 239-257.
    3. Ndayisenga, Fabrice & Yu, Zhisheng & Zheng, Jianzhong & Wang, Bobo & Liang, Hongxia & Phulpoto, Irfan Ali & Habiyakare, Telesphore & Zhou, Dandan, 2021. "Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: Substrate pretreatment towards optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Ferraren-De Cagalitan, D.D.T. & Abundo, M.L.S., 2021. "A review of biohydrogen production technology for application towards hydrogen fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Machado, R.G. & Moreira, F.S. & Batista, F.R.X. & Ferreira, J.S. & Cardoso, V.L., 2018. "Repeated batch cycles as an alternative for hydrogen production by co-culture photofermentation," Energy, Elsevier, vol. 153(C), pages 861-869.
    6. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Kadier, Abudukeremu & Kalil, Mohd Sahaid & Abdeshahian, Peyman & Chandrasekhar, K. & Mohamed, Azah & Azman, Nadia Farhana & Logroño, Washington & Simayi, Yibadatihan & Hamid, Aidil Abdul, 2016. "Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 501-525.
    8. Bakonyi, Péter & Buitrón, Germán & Valdez-Vazquez, Idania & Nemestóthy, Nándor & Bélafi-Bakó, Katalin, 2017. "A novel gas separation integrated membrane bioreactor to evaluate the impact of self-generated biogas recycling on continuous hydrogen fermentation," Applied Energy, Elsevier, vol. 190(C), pages 813-823.
    9. Merrylin Jayaseelan & Mohamed Usman & Adishkumar Somanathan & Sivashanmugam Palani & Gunasekaran Muniappan & Rajesh Banu Jeyakumar, 2021. "Microalgal Production of Biofuels Integrated with Wastewater Treatment," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    10. Miyawaki, B. & Mariano, A.B. & Vargas, J.V.C. & Balmant, W. & Defrancheschi, A.C. & Corrêa, D.O. & Santos, B. & Selesu, N.F.H. & Ordonez, J.C. & Kava, V.M., 2021. "Microalgae derived biomass and bioenergy production enhancement through biogas purification and wastewater treatment," Renewable Energy, Elsevier, vol. 163(C), pages 1153-1165.
    11. Rahman, S.N.A. & Masdar, M.S. & Rosli, M.I. & Majlan, E.H. & Husaini, T. & Kamarudin, S.K. & Daud, W.R.W., 2016. "Overview biohydrogen technologies and application in fuel cell technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 137-162.
    12. Akhlaghi, Shahin & Gedde, Ulf W. & Hedenqvist, Mikael S. & Braña, Maria T. Conde & Bellander, Martin, 2015. "Deterioration of automotive rubbers in liquid biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1238-1248.
    13. Shi, Xian-Yang & Yu, Han-Qing, 2016. "Simultaneous metabolism of benzoate and photobiological hydrogen production by Lyngbya sp," Renewable Energy, Elsevier, vol. 95(C), pages 474-477.
    14. Abdin, Zainul & Zafaranloo, Ali & Rafiee, Ahmad & Mérida, Walter & Lipiński, Wojciech & Khalilpour, Kaveh R., 2020. "Hydrogen as an energy vector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    15. Park, Jeong-Hoon & Lee, Sang-Hoon & Ju, Hyun-Jun & Kim, Sang-Hyoun & Yoon, Jeong-Jun & Park, Hee-Deung, 2016. "Failure of biohydrogen production by low levels of substrate and lactic acid accumulation," Renewable Energy, Elsevier, vol. 86(C), pages 889-894.
    16. He, Li & Du, Peng & Chen, Yizhong & Lu, Hongwei & Cheng, Xi & Chang, Bei & Wang, Zheng, 2017. "Advances in microbial fuel cells for wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 388-403.
    17. Trchounian, Karen & Sawers, R. Gary & Trchounian, Armen, 2017. "Improving biohydrogen productivity by microbial dark- and photo-fermentations: Novel data and future approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1201-1216.
    18. Palomo-Briones, Rodolfo & Razo-Flores, Elías & Bernet, Nicolas & Trably, Eric, 2017. "Dark-fermentative biohydrogen pathways and microbial networks in continuous stirred tank reactors: Novel insights on their control," Applied Energy, Elsevier, vol. 198(C), pages 77-87.
    19. Pattanamanee, Walailak & Chisti, Yusuf & Choorit, Wanna, 2015. "Photofermentive hydrogen production by Rhodobacter sphaeroides S10 using mixed organic carbon: Effects of the mixture composition," Applied Energy, Elsevier, vol. 157(C), pages 245-254.
    20. Anita Šalić & Bruno Zelić, 2022. "A Game Changer: Microfluidic Technology for Enhancing Biohydrogen Production—Small Size for Great Performance," Energies, MDPI, vol. 15(19), pages 1-22, September.
    21. Bakonyi, P. & Nemestóthy, N. & Simon, V. & Bélafi-Bakó, K., 2014. "Review on the start-up experiences of continuous fermentative hydrogen producing bioreactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 806-813.
    22. Yiyang Liu & Jingluo Min & Xingyu Feng & Yue He & Jinze Liu & Yixiao Wang & Jun He & Hainam Do & Valérie Sage & Gang Yang & Yong Sun, 2020. "A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance," Energies, MDPI, vol. 13(10), pages 1-27, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    2. Packer, Mike, 2009. "Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy," Energy Policy, Elsevier, vol. 37(9), pages 3428-3437, September.
    3. Qu, Guangfei & Lv, Pei & Cai, Yingying & Tu, Can & Ma, Xi & Ning, Ping, 2020. "Enhanced anaerobic fermentation of dairy manure by microelectrolysis in electric and magnetic fields," Renewable Energy, Elsevier, vol. 146(C), pages 2758-2765.
    4. Zheng, Longyu & Li, Qing & Zhang, Jibin & Yu, Ziniu, 2012. "Double the biodiesel yield: Rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production," Renewable Energy, Elsevier, vol. 41(C), pages 75-79.
    5. Patel, Anil Kumar & Vaisnav, Neha & Mathur, Anshu & Gupta, Ravi & Tuli, Deepak Kumar, 2016. "Whey waste as potential feedstock for biohydrogen production," Renewable Energy, Elsevier, vol. 98(C), pages 221-225.
    6. Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).
    7. Watson, Stephen C.L. & Paterson, David M. & Queirós, Ana M. & Rees, Andrew P. & Stephens, Nicholas & Widdicombe, Stephen & Beaumont, Nicola J., 2016. "A conceptual framework for assessing the ecosystem service of waste remediation: In the marine environment," Ecosystem Services, Elsevier, vol. 20(C), pages 69-81.
    8. Patel, Sanjay K.S. & Das, Devashish & Kim, Sun Chang & Cho, Byung-Kwan & Kalia, Vipin Chandra & Lee, Jung-Kul, 2021. "Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Sołowski, Gaweł & Shalaby, Marwa.S. & Abdallah, Heba & Shaban, Ahmed.M. & Cenian, Adam, 2018. "Production of hydrogen from biomass and its separation using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3152-3167.
    10. Yiyang Liu & Jingluo Min & Xingyu Feng & Yue He & Jinze Liu & Yixiao Wang & Jun He & Hainam Do & Valérie Sage & Gang Yang & Yong Sun, 2020. "A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance," Energies, MDPI, vol. 13(10), pages 1-27, May.
    11. Yang, Sen & Li, Qing & Gao, Yang & Zheng, Longyu & Liu, Ziduo, 2014. "Biodiesel production from swine manure via housefly larvae (Musca domestica L.)," Renewable Energy, Elsevier, vol. 66(C), pages 222-227.
    12. Cappelletti, Bianca Martins & Reginatto, Valeria & Amante, Edna Regina & Antônio, Regina Vasconcellos, 2011. "Fermentative production of hydrogen from cassava processing wastewater by Clostridium acetobutylicum," Renewable Energy, Elsevier, vol. 36(12), pages 3367-3372.
    13. Niño-Navarro, C. & Chairez, I. & Christen, P. & Canul-Chan, M. & García-Peña, E.I., 2020. "Enhanced hydrogen production by a sequential dark and photo fermentation process: Effects of initial feedstock composition, dilution and microbial population," Renewable Energy, Elsevier, vol. 147(P1), pages 924-936.
    14. Siad, Si Mokrane & Iacobellis, Vito & Zdruli, Pandi & Gioia, Andrea & Stavi, Ilan & Hoogenboom, Gerrit, 2019. "A review of coupled hydrologic and crop growth models," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    15. King-Wah Chiu & Toshiaki Nakano & Kuang-Den Chen & Li-Wen Hsu & Chia-Yun Lai & Ching-Yin Huang & Yu-Fan Cheng & Shigeru Goto & Chao-Long Chen, 2015. "Repeated-Measures Implication of Hepatocellular Carcinoma Biomarkers in Living Donor Liver Transplantation," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-12, May.
    16. Harish, B.S & Janaki Ramaiah, M. & Babu Uppuluri, Kiran, 2015. "Bioengineering strategies on catalysis for the effective production of renewable and sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 533-547.
    17. Yiyang Liu & Jinze Liu & Hongzhen He & Shanru Yang & Yixiao Wang & Jin Hu & Huan Jin & Tianxiang Cui & Gang Yang & Yong Sun, 2021. "A Review of Enhancement of Biohydrogen Productions by Chemical Addition Using a Supervised Machine Learning Method," Energies, MDPI, vol. 14(18), pages 1-16, September.
    18. Samir Bensaid & Bernardo Ruggeri & Guido Saracco, 2015. "Development of a Photosynthetic Microbial Electrochemical Cell (PMEC) Reactor Coupled with Dark Fermentation of Organic Wastes: Medium Term Perspectives," Energies, MDPI, vol. 8(1), pages 1-31, January.
    19. Sambusiti, Cecilia & Bellucci, Micol & Zabaniotou, Anastasia & Beneduce, Luciano & Monlau, Florian, 2015. "Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 20-36.
    20. Hosseinzadeh, Ahmad & Zhou, John L. & Li, Xiaowei & Afsari, Morteza & Altaee, Ali, 2022. "Techno-economic and environmental impact assessment of hydrogen production processes using bio-waste as renewable energy resource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:31:y:2014:i:c:p:158-173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.