IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v75y2017icp368-379.html
   My bibliography  Save this article

Assessment of Light Emitting Diodes technology for general lighting: A critical review

Author

Listed:
  • Nardelli, Andrei
  • Deuschle, Eduardo
  • de Azevedo, Leticia Dalpaz
  • Pessoa, João Lorenço Novaes
  • Ghisi, Enedir

Abstract

Lighting consumes about 19% of the electricity used around the world, and since inefficient lighting sources are still in use worldwide, there is great potential for electricity savings. Even fluorescent lamps, with better luminous efficiency than incandescent and halogen lamps, have some limitations. This article presents the results of an evaluation of the potential of Light Emitting Diodes (LEDs) as a light source for use in buildings, under several aspects, and compares them to more consolidated sources. It includes a review of scientific articles, governmental reports and product catalogues for lighting sources from seven manufacturing companies. Results showed that LEDs have a long lifespan, a wide range of correlated colour temperature, good luminous efficiency, colour rendering index and many other characteristics similar to those of fluorescent lamps. However, the acquisition costs are still higher than those of other lighting systems and the market still offers too many low-quality LEDs. Furthermore, LEDs with inefficient heat dissipation may have high lumen depreciation and, therefore, a shorter lifespan. Despite these limitations, however, LED technology is evolving rapidly and, unlike other light sources, has great potential for improvement and may be the best alternative for lighting in the next few years.

Suggested Citation

  • Nardelli, Andrei & Deuschle, Eduardo & de Azevedo, Leticia Dalpaz & Pessoa, João Lorenço Novaes & Ghisi, Enedir, 2017. "Assessment of Light Emitting Diodes technology for general lighting: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 368-379.
  • Handle: RePEc:eee:rensus:v:75:y:2017:i:c:p:368-379
    DOI: 10.1016/j.rser.2016.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211630781X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hinnells, Mark, 2008. "Technologies to achieve demand reduction and microgeneration in buildings," Energy Policy, Elsevier, vol. 36(12), pages 4427-4433, December.
    2. Aman, M.M. & Jasmon, G.B. & Mokhlis, H. & Bakar, A.H.A., 2013. "Analysis of the performance of domestic lighting lamps," Energy Policy, Elsevier, vol. 52(C), pages 482-500.
    3. De Almeida, Aníbal & Santos, Bruno & Paolo, Bertoldi & Quicheron, Michel, 2014. "Solid state lighting review – Potential and challenges in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 30-48.
    4. Thejokalyani, N. & Dhoble, S.J., 2014. "Novel approaches for energy efficient solid state lighting by RGB organic light emitting diodes – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 448-467.
    5. Han, H.J. & Jeon, Y.I. & Lim, S.H. & Kim, W.W. & Chen, K., 2010. "New developments in illumination, heating and cooling technologies for energy-efficient buildings," Energy, Elsevier, vol. 35(6), pages 2647-2653.
    6. Khan, N. & Abas, N., 2011. "Comparative study of energy saving light sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 296-309, January.
    7. Khorasanizadeh, Hasti & Parkkinen, Jussi & Parthiban, Rajendran & David Moore, Joel, 2015. "Energy and economic benefits of LED adoption in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 629-637.
    8. Chitnis, Dipti & Thejo kalyani, N. & Swart, H.C. & Dhoble, S.J., 2016. "Escalating opportunities in the field of lighting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 727-748.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Oliveira, R.P. & Benvenuti, J. & Espinosa, D.C.R., 2021. "A review of the current progress in recycling technologies for gallium and rare earth elements from light-emitting diodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Nina Sakinah Ahmad Rofaie & Seuk Wai Phoong & Muzalwana Abdul Talib & Ainin Sulaiman, 2023. "Light-emitting diode (LED) research: A bibliometric analysis during 2003–2018," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 173-191, February.
    3. Zahra Fallahi & Gregor P. Henze, 2019. "Interactive Buildings: A Review," Sustainability, MDPI, vol. 11(14), pages 1-26, July.
    4. Gaffuri, Pierre & Stolyarova, Elena & Llerena, Daniel & Appert, Estelle & Consonni, Marianne & Robin, Stéphane & Consonni, Vincent, 2021. "Potential substitutes for critical materials in white LEDs: Technological challenges and market opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Carson Kinney & Alireza Dehghani-Sanij & SeyedBijan Mahbaz & Maurice B. Dusseault & Jatin S. Nathwani & Roydon A. Fraser, 2019. "Geothermal Energy for Sustainable Food Production in Canada’s Remote Northern Communities," Energies, MDPI, vol. 12(21), pages 1-25, October.
    6. Baloch, Ashfaque Ahmed & Shaikh, Pervez Hameed & Shaikh, Faheemullah & Leghari, Zohaib Hussain & Mirjat, Nayyar Hussain & Uqaili, Muhammad Aslam, 2018. "Simulation tools application for artificial lighting in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3007-3026.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azcarate, I. & Gutierrez, J.J. & Lazkano, A. & Saiz, P. & Redondo, K. & Leturiondo, L.A., 2016. "Towards limiting the sensitivity of energy-efficient lighting to voltage fluctuations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1384-1395.
    2. Timma, Lelde & Bazbauers, Gatis & Bariss, Uldis & Blumberga, Andra & Blumberga, Dagnija, 2017. "Energy efficiency policy analysis using socio-technical approach and system dynamics. Case study of lighting in Latvia's households," Energy Policy, Elsevier, vol. 109(C), pages 545-554.
    3. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    4. Fabio Fantozzi & Francesco Leccese & Giacomo Salvadori & Michele Rocca & Marco Garofalo, 2016. "LED Lighting for Indoor Sports Facilities: Can Its Use Be Considered as Sustainable Solution from a Techno-Economic Standpoint?," Sustainability, MDPI, vol. 8(7), pages 1-13, June.
    5. Aiman Albatayneh & Adel Juaidi & Ramez Abdallah & Francisco Manzano-Agugliaro, 2021. "Influence of the Advancement in the LED Lighting Technologies on the Optimum Windows-to-Wall Ratio of Jordanians Residential Buildings," Energies, MDPI, vol. 14(17), pages 1-20, September.
    6. Khorasanizadeh, Hasti & Parkkinen, Jussi & Parthiban, Rajendran & David Moore, Joel, 2015. "Energy and economic benefits of LED adoption in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 629-637.
    7. Enongene, K.E. & Murray, P. & Holland, J. & Abanda, F.H., 2017. "Energy savings and economic benefits of transition towards efficient lighting in residential buildings in Cameroon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 731-742.
    8. Miroslaw Wlas & Stanislaw Galla, 2018. "The Influence of LED Lighting Sources on the Nature of Power Factor," Energies, MDPI, vol. 11(6), pages 1-12, June.
    9. Lobão, J.A. & Devezas, T. & Catalão, J.P.S., 2014. "Influence of cable losses on the economic analysis of efficient and sustainable electrical equipment," Energy, Elsevier, vol. 65(C), pages 145-151.
    10. Mustaffa, Nur Kamaliah & Kudus, Sakhiah Abdul, 2022. "Challenges and way forward towards best practices of energy efficient building in Malaysia," Energy, Elsevier, vol. 259(C).
    11. repec:hal:gemwpa:hal-00991732 is not listed on IDEAS
    12. Chitnis, Dipti & Thejo kalyani, N. & Swart, H.C. & Dhoble, S.J., 2016. "Escalating opportunities in the field of lighting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 727-748.
    13. Matej Tazky & Michal Regula & Alena Otcenasova, 2021. "Impact of Changes in a Distribution Network Nature on the Capacitive Reactive Power Flow into the Transmission Network in Slovakia," Energies, MDPI, vol. 14(17), pages 1-16, August.
    14. Jongmin Lee & Bum Ho Jeong & Eswaran Kamaraj & Dohyung Kim & Hakjun Kim & Sanghyuk Park & Hui Joon Park, 2023. "Light-enhanced molecular polarity enabling multispectral color-cognitive memristor for neuromorphic visual system," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    15. Roberts, Frank & Yang, Siliang & Du, Hu & Yang, Rebecca, 2023. "Effect of semi-transparent a-Si PV glazing within double-skin façades on visual and energy performances under the UK climate condition," Renewable Energy, Elsevier, vol. 207(C), pages 601-610.
    16. Široký, Jan & Oldewurtel, Frauke & Cigler, Jiří & Prívara, Samuel, 2011. "Experimental analysis of model predictive control for an energy efficient building heating system," Applied Energy, Elsevier, vol. 88(9), pages 3079-3087.
    17. Tanesab, Julius & Parlevliet, David & Whale, Jonathan & Urmee, Tania, 2018. "Energy and economic losses caused by dust on residential photovoltaic (PV) systems deployed in different climate areas," Renewable Energy, Elsevier, vol. 120(C), pages 401-412.
    18. Abas, Naeem & Kalair, Ali Raza & Khan, Nasrullah & Haider, Aun & Saleem, Zahid & Saleem, Muhammad Shoaib, 2018. "Natural and synthetic refrigerants, global warming: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 557-569.
    19. Mizanur Rahman, S.M. & Kim, Junbeum & Lerondel, Gilles & Bouzidi, Youcef & Nomenyo, Komla & Clerget, Laure, 2017. "Missing research focus in end-of-life management of light-emitting diode (LED) lamps," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 256-258.
    20. Kalair, A. & Abas, N. & Kalair, A.R. & Saleem, Z. & Khan, N., 2017. "Review of harmonic analysis, modeling and mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1152-1187.
    21. Kim, Yeongmin & Jeong, Hae Jun & Kim, Wonsik & Chun, Wongee & Han, Hyun Joo & Lim, Sang Hoon, 2017. "A comparative performance analysis on daylighting for two different types of solar concentrators: Dish vs. Fresnel lens," Energy, Elsevier, vol. 137(C), pages 449-456.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:75:y:2017:i:c:p:368-379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.