IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v72y2017icp625-638.html
   My bibliography  Save this article

Biomass and bioenergy potential of cassava waste in Nigeria: Estimations based partly on rural-level garri processing case studies

Author

Listed:
  • Ozoegwu, C.G.
  • Eze, C.
  • Onwosi, C.O.
  • Mgbemene, C.A.
  • Ozor, P.A.

Abstract

Advocating production of bio-energy from agricultural crop wastes has double benefits of minimizing land usage and threat to food security. These benefits are specially needed now that issues of greenhouse emissions, deforestation and human over population of the world dominate international discuss. Cassava being a major food crop in Africa, its waste constitutes the major candidate for bio-energy production thus motivating the aim to review its history, production, food value, economic value and bio-energy value. Cassava waste is noted to be suitable feedstock for bio-fuel production from the 1st Generation, 2nd Generation and integrated processes unlike the other Nigerian crop residues that are mainly suitable for the not-yet-viable 2nd Generation bio-fuel production. A procedure for estimating cassava non-food biomass(CnFB) from harvest data is established. The procedure entails use of statistical sampling and regression analysis to establish scaling factors for transforming the data to CnFB. A real case study reflected very accurate and statistically significant error indices. For example, the factor for converting mass of harvested cassava for food production to waste is Rw=0.5263 (R2 = 0.9875 and t-Test = 0.0896) while the factor for estimating mass of peels alone is R12=0.1735 (R2 = 0.9951 and t-Test = 0.1680). The other factors for converting mass of dewatered cassava pulp to waste were established for the case study community as follows; mw=33.7675 Kg per bag (R2 = 0.9611 and t-Test = 0.0665), m3=32.0599 kg per bag (R2 = 0.9865 and t-Test = 0.1944) and rw=1.0508 (R2 = 0.9464 and t-Test = 0.2539). The factors and literature data were used to make long-term projections of CnFB potential of Nigeria. The implications of the projections to the programs of the Nigeria Energy Policy - which pertain to renewable energy integration in the national energy mix, emission reduction and rural electrification via distributed generation - were discussed.

Suggested Citation

  • Ozoegwu, C.G. & Eze, C. & Onwosi, C.O. & Mgbemene, C.A. & Ozor, P.A., 2017. "Biomass and bioenergy potential of cassava waste in Nigeria: Estimations based partly on rural-level garri processing case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 625-638.
  • Handle: RePEc:eee:rensus:v:72:y:2017:i:c:p:625-638
    DOI: 10.1016/j.rser.2017.01.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117300321
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.01.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jansson, Christer & Westerbergh, Anna & Zhang, Jiaming & Hu, Xinwen & Sun, Chuanxin, 2009. "Cassava, a potential biofuel crop in (the) People's Republic of China," Applied Energy, Elsevier, vol. 86(Supplemen), pages 95-99, November.
    2. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    3. Pepermans, G. & Driesen, J. & Haeseldonckx, D. & Belmans, R. & D'haeseleer, W., 2005. "Distributed generation: definition, benefits and issues," Energy Policy, Elsevier, vol. 33(6), pages 787-798, April.
    4. Okudoh, Vincent & Trois, Cristina & Workneh, Tilahun & Schmidt, Stefan, 2014. "The potential of cassava biomass and applicable technologies for sustainable biogas production in South Africa: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1035-1052.
    5. Wei, Maogui & Zhu, Wanbin & Xie, Guanghui & Lestander, Torbjörn A. & Xiong, Shaojun, 2015. "Cassava stem wastes as potential feedstock for fuel ethanol production: A basic parameter study," Renewable Energy, Elsevier, vol. 83(C), pages 970-978.
    6. Naik, S.N. & Goud, Vaibhav V. & Rout, Prasant K. & Dalai, Ajay K., 2010. "Production of first and second generation biofuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 578-597, February.
    7. Oyedepo, Sunday Olayinka, 2012. "On energy for sustainable development in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2583-2598.
    8. Anyanwu, C.N. & Ibeto, C.N. & Ezeoha, S.L. & Ogbuagu, N.J., 2015. "Sustainability of cassava (Manihot esculenta Crantz) as industrial feedstock, energy and food crop in Nigeria," Renewable Energy, Elsevier, vol. 81(C), pages 745-752.
    9. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N. & Ogundola, M.A. & Umar, U., 2014. "Sustainable potential of bioenergy resources for distributed power generation development in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 361-370.
    10. Shaaban, Mohamed & Petinrin, J.O., 2014. "Renewable energy potentials in Nigeria: Meeting rural energy needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 72-84.
    11. Cheng, Jay J. & Timilsina, Govinda R., 2011. "Status and barriers of advanced biofuel technologies: A review," Renewable Energy, Elsevier, vol. 36(12), pages 3541-3549.
    12. Aliyu, Abubakar Sadiq & Dada, Joseph O. & Adam, Ibrahim Khalil, 2015. "Current status and future prospects of renewable energy in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 336-346.
    13. Lin, Boqiang & Omoju, Oluwasola E. & Okonkwo, Jennifer U., 2015. "Impact of industrialisation on CO2 emissions in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1228-1239.
    14. Mao, Chunlan & Feng, Yongzhong & Wang, Xiaojiao & Ren, Guangxin, 2015. "Review on research achievements of biogas from anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 540-555.
    15. Chang, Shiyan & Zhao, Lili & Timilsina, Govinda R. & Zhang, Xiliang, 2012. "Biofuels development in China: Technology options and policies needed to meet the 2020 target," Energy Policy, Elsevier, vol. 51(C), pages 64-79.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ozoegwu, Chigbogu G. & Akpan, Patrick U., 2021. "A review and appraisal of Nigeria's solar energy policy objectives and strategies against the backdrop of the renewable energy policy of the Economic Community of West African States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Padi, Richard Kingsley & Chimphango, Annie, 2021. "Assessing the potential of integrating cassava residues-based bioenergy into national energy mix using long-range Energy Alternatives Planning systems approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Nie, Yaoyu & Cai, Wenjia & Wang, Can & Huang, Guorui & Ding, Qun & Yu, Le & Li, Haoran & Ji, Duoying, 2019. "Assessment of the potential and distribution of an energy crop at 1-km resolution from 2010 to 2100 in China – The case of sweet sorghum," Applied Energy, Elsevier, vol. 239(C), pages 395-407.
    4. Gustavo Moratelli & Silvio Douglas Ferreira & Hiago Canavessi & Emerson Fey & Marcos Antonio Sedrez Rangel & Neumarcio Vilanova da Costa, 2021. "Weed Interference on Growth and Leaf Nutrient Accumulation in Two Cassava Varieties," Journal of Agricultural Studies, Macrothink Institute, vol. 9(1), pages 91-111, June.
    5. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.
    6. Azevedo, Susana Garrido & Sequeira, Tiago & Santos, Marcelo & Mendes, Luis, 2019. "Biomass-related sustainability: A review of the literature and interpretive structural modeling," Energy, Elsevier, vol. 171(C), pages 1107-1125.
    7. Dong Jiang & Shuai Chen & Mengmeng Hao & Jingying Fu & Fangyu Ding, 2018. "Assessing the Sustainable Development of Bioenergy from Cassava within “Water-Energy-Food” Nexus Framework in China," Sustainability, MDPI, vol. 10(7), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giwa, Adewale & Alabi, Adetunji & Yusuf, Ahmed & Olukan, Tuza, 2017. "A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 620-641.
    2. Ozoegwu, C.G. & Mgbemene, C.A. & Ozor, P.A., 2017. "The status of solar energy integration and policy in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 457-471.
    3. Aliyu, Abubakar Sadiq & Dada, Joseph O. & Adam, Ibrahim Khalil, 2015. "Current status and future prospects of renewable energy in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 336-346.
    4. Okoye, Chiemeka Onyeka & Bahrami, Arian & Atikol, Ugur, 2018. "Evaluating the solar resource potential on different tracking surfaces in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1569-1581.
    5. Rafindadi, Abdulkadir Abdulrashid, 2016. "Does the need for economic growth influence energy consumption and CO2 emissions in Nigeria? Evidence from the innovation accounting test," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1209-1225.
    6. Elum, Z.A. & Momodu, A.S., 2017. "Climate change mitigation and renewable energy for sustainable development in Nigeria: A discourse approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 72-80.
    7. Daniel Akinyele & Juri Belikov & Yoash Levron, 2018. "Challenges of Microgrids in Remote Communities: A STEEP Model Application," Energies, MDPI, vol. 11(2), pages 1-35, February.
    8. Oyedepo, Sunday Olayinka, 2014. "Towards achieving energy for sustainable development in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 255-272.
    9. Ugwoke, B. & Gershon, O. & Becchio, C. & Corgnati, S.P. & Leone, P., 2020. "A review of Nigerian energy access studies: The story told so far," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    10. Emodi, Nnaemeka Vincent & Boo, Kyung-Jin, 2015. "Sustainable energy development in Nigeria: Current status and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 356-381.
    11. Ko, Ja Kyong & Lee, Jae Hoon & Jung, Je Hyeong & Lee, Sun-Mi, 2020. "Recent advances and future directions in plant and yeast engineering to improve lignocellulosic biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.
    13. Kumar, Rajesh & Agarwala, Arun, 2016. "Renewable energy technology diffusion model for techno-economics feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1515-1524.
    14. Brimmo, Ayoola T. & Sodiq, Ahmed & Sofela, Samuel & Kolo, Isa, 2017. "Sustainable energy development in Nigeria: Wind, hydropower, geothermal and nuclear (Vol. 1)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 474-490.
    15. Okudoh, Vincent & Trois, Cristina & Workneh, Tilahun & Schmidt, Stefan, 2014. "The potential of cassava biomass and applicable technologies for sustainable biogas production in South Africa: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1035-1052.
    16. Pius Ogundiran, 2018. "Renewable Energy as Alternative Source of Power and Funding of Renewable Energy in Nigeria," Asian Bulletin of Energy Economics and Technology, Asian Online Journal Publishing Group, vol. 4(1), pages 1-9.
    17. Lin, Boqiang & Ankrah, Isaac, 2019. "On Nigeria's renewable energy program: Examining the effectiveness, substitution potential, and the impact on national output," Energy, Elsevier, vol. 167(C), pages 1181-1193.
    18. Zhang, Tingting & Xie, Xiaomin & Huang, Zhen, 2017. "The policy recommendations on cassava ethanol in China: Analyzed from the perspective of life cycle “2E&W”," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 12-24.
    19. Chankook Park & Minkyu Kim, 2021. "A Study on the Characteristics of Academic Topics Related to Renewable Energy Using the Structural Topic Modeling and the Weak Signal Concept," Energies, MDPI, vol. 14(5), pages 1-24, March.
    20. Shah, Syed Hasnain & Raja, Iftikhar Ahmed & Rizwan, Muhammad & Rashid, Naim & Mahmood, Qaisar & Shah, Fayyaz Ali & Pervez, Arshid, 2018. "Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 76-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:72:y:2017:i:c:p:625-638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.