IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v126y2017icp12-24.html
   My bibliography  Save this article

The policy recommendations on cassava ethanol in China: Analyzed from the perspective of life cycle “2E&W”

Author

Listed:
  • Zhang, Tingting
  • Xie, Xiaomin
  • Huang, Zhen

Abstract

The Chinese government has been implementing the policy of encouraging to use ethanol-blended gasoline as fuels. However, the actual application is still facing lots of challenges. In this study, a well-operated cassava ethanol system in China was chosen as the case study to investigate energy consumption, GHGs emission, and water footprints (“2E&W”) from the life cycle perspective. The status quo and the evolution of China’s policies on bioethanol were also reviewed. Positive net energy value of 13.64MJ/L ethanol and net GHGs emission of 1473gCO2-eq/L ethanol were found for cassava ethanol, which indicates that it could be an excellent substitute for gasoline. Compared with gasoline, using E10 and E85 could have the potential reduce fossil energy usage and GHG emissions. During its life cycle, ethanol conversion is the most energy-intensive and GHGs-intensive stage. The water footprint of cassava ethanol is 2998m3/tonne. Unlike energy consumption and GHGs, the cassava planting stage is the most water-footprint-intensive stage due to the grey water caused by the fertilizer. The life cycle results of cassava ethanol are sensitive to many factors, such as cassava yield, energy input. Finally, some policy recommendations are provided.

Suggested Citation

  • Zhang, Tingting & Xie, Xiaomin & Huang, Zhen, 2017. "The policy recommendations on cassava ethanol in China: Analyzed from the perspective of life cycle “2E&W”," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 12-24.
  • Handle: RePEc:eee:recore:v:126:y:2017:i:c:p:12-24
    DOI: 10.1016/j.resconrec.2017.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344917301878
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2017.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Suiran & Tao, Jing, 2009. "Economic, energy and environmental evaluations of biomass-based fuel ethanol projects based on life cycle assessment and simulation," Applied Energy, Elsevier, vol. 86(Supplemen), pages 178-188, November.
    2. Jansson, Christer & Westerbergh, Anna & Zhang, Jiaming & Hu, Xinwen & Sun, Chuanxin, 2009. "Cassava, a potential biofuel crop in (the) People's Republic of China," Applied Energy, Elsevier, vol. 86(Supplemen), pages 95-99, November.
    3. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    4. Wang, Michael & Huo, Hong & Arora, Salil, 2011. "Methods of dealing with co-products of biofuels in life-cycle analysis and consequent results within the U.S. context," Energy Policy, Elsevier, vol. 39(10), pages 5726-5736, October.
    5. Iddrisu, Insah & Bhattacharyya, Subhes C., 2015. "Ghana׳s bioenergy policy: Is 20% biofuel integration achievable by 2030?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 32-39.
    6. Liu, Beibei & Wang, Feng & Zhang, Bing & Bi, Jun, 2013. "Energy balance and GHG emissions of cassava-based fuel ethanol using different planting modes in China," Energy Policy, Elsevier, vol. 56(C), pages 210-220.
    7. Valencia, Monica J. & Cardona, Carlos A., 2014. "The Colombian biofuel supply chains: The assessment of current and promising scenarios based on environmental goals," Energy Policy, Elsevier, vol. 67(C), pages 232-242.
    8. Yan, Xiaoyu & Crookes, Roy J., 2009. "Life cycle analysis of energy use and greenhouse gas emissions for road transportation fuels in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2505-2514, December.
    9. Yu, Suiran & Tao, Jing, 2009. "Energy efficiency assessment by life cycle simulation of cassava-based fuel ethanol for automotive use in Chinese Guangxi context," Energy, Elsevier, vol. 34(1), pages 22-31.
    10. Okudoh, Vincent & Trois, Cristina & Workneh, Tilahun & Schmidt, Stefan, 2014. "The potential of cassava biomass and applicable technologies for sustainable biogas production in South Africa: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1035-1052.
    11. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    12. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Hazrat, M.A., 2015. "Prospect of biofuels as an alternative transport fuel in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 331-351.
    13. Yu, Suiran & Tao, Jing, 2009. "Simulation-based life cycle assessment of energy efficiency of biomass-based ethanol fuel from different feedstocks in China," Energy, Elsevier, vol. 34(4), pages 476-484.
    14. Guo, Mingxin & Song, Weiping & Buhain, Jeremy, 2015. "Bioenergy and biofuels: History, status, and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 712-725.
    15. Ershov, М.А. & Grigoreva, E.V. & Habibullin, I.F. & Emelyanov, V.E. & Strekalina, D.M., 2016. "Prospects of bioethanol fuels E30 and E85 application in Russia and technical requirements for their quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 228-232.
    16. Nguyen, Thu Lan Thi & Gheewala, Shabbir H. & Garivait, Savitri, 2007. "Energy balance and GHG-abatement cost of cassava utilization for fuel ethanol in Thailand," Energy Policy, Elsevier, vol. 35(9), pages 4585-4596, September.
    17. Silalertruksa, Thapat & Gheewala, Shabbir H., 2009. "Environmental sustainability assessment of bio-ethanol production in Thailand," Energy, Elsevier, vol. 34(11), pages 1933-1946.
    18. García, Carlos A. & Riegelhaupt, Enrique & Ghilardi, Adrián & Skutsch, Margaret & Islas, Jorge & Manzini, Fabio & Masera, Omar, 2015. "Sustainable bioenergy options for Mexico: GHG mitigation and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 545-552.
    19. Su, Yujie & Zhang, Peidong & Su, Yuqing, 2015. "An overview of biofuels policies and industrialization in the major biofuel producing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 991-1003.
    20. Ishola, Mofoluwake M. & Brandberg, Tomas & Sanni, Sikiru A. & Taherzadeh, Mohammad J., 2013. "Biofuels in Nigeria: A critical and strategic evaluation," Renewable Energy, Elsevier, vol. 55(C), pages 554-560.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Junjie & Zhang, Yueling & Yang, Yanli & Zhang, Xiaomei & Wang, Nana & Zheng, Yonghong & Tian, Yajun & Xie, Kechang, 2022. "Life cycle assessment and techno-economic analysis of ethanol production via coal and its competitors: A comparative study," Applied Energy, Elsevier, vol. 312(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.
    2. Liu, Huacai & Huang, Yanqin & Yuan, Hongyou & Yin, Xiuli & Wu, Chuangzhi, 2018. "Life cycle assessment of biofuels in China: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 301-322.
    3. Arora, Richa & Behera, Shuvashish & Kumar, Sachin, 2015. "Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: A future perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 699-717.
    4. Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Liu, Beibei & Wang, Feng & Zhang, Bing & Bi, Jun, 2013. "Energy balance and GHG emissions of cassava-based fuel ethanol using different planting modes in China," Energy Policy, Elsevier, vol. 56(C), pages 210-220.
    6. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. Weng, Yuwei & Chang, Shiyan & Cai, Wenjia & Wang, Can, 2019. "Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China," Applied Energy, Elsevier, vol. 236(C), pages 514-525.
    8. Zhang, Chen & Sun, Zongxuan, 2017. "Trajectory-based combustion control for renewable fuels in free piston engines," Applied Energy, Elsevier, vol. 187(C), pages 72-83.
    9. Ozoegwu, C.G. & Eze, C. & Onwosi, C.O. & Mgbemene, C.A. & Ozor, P.A., 2017. "Biomass and bioenergy potential of cassava waste in Nigeria: Estimations based partly on rural-level garri processing case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 625-638.
    10. Giwa, Adewale & Alabi, Adetunji & Yusuf, Ahmed & Olukan, Tuza, 2017. "A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 620-641.
    11. Hagos, Ftwi Y. & Ali, Obed M. & Mamat, Rizalman & Abdullah, Abdul A., 2017. "Effect of emulsification and blending on the oxygenation and substitution of diesel fuel for compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1281-1294.
    12. Wang, Changbo & Chang, Yuan & Zhang, Lixiao & Chen, Yongsheng & Pang, Mingyue, 2018. "Quantifying uncertainties in greenhouse gas accounting of biomass power generation in China: System boundary and parameters," Energy, Elsevier, vol. 158(C), pages 121-127.
    13. Ekaterina S. Titova, 2019. "Biofuel Application as a Factor of Sustainable Development Ensuring: The Case of Russia," Energies, MDPI, vol. 12(20), pages 1-30, October.
    14. Piotr Gradziuk & Krzysztof Jończyk & Barbara Gradziuk & Adrianna Wojciechowska & Anna Trocewicz & Marcin Wysokiński, 2021. "An Economic Assessment of the Impact on Agriculture of the Proposed Changes in EU Biofuel Policy Mechanisms," Energies, MDPI, vol. 14(21), pages 1-21, October.
    15. Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Pang, Mingyue, 2021. "Energy return on investment (EROI) of biomass conversion systems in China: Meta-analysis focused on system boundary unification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    16. Zhang, Xingping & Luo, Kaiyan & Tan, Qinliang, 2016. "A feedstock supply model integrating the official organization for China's biomass generation plants," Energy Policy, Elsevier, vol. 97(C), pages 276-290.
    17. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    18. Joselin Herbert, G.M. & Unni Krishnan, A., 2016. "Quantifying environmental performance of biomass energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 292-308.
    19. Sánchez, Antonio Santos & Silva, Yuri Lopes & Kalid, Ricardo Araújo & Cohim, Eduardo & Torres, Ednildo Andrade, 2017. "Waste bio-refineries for the cassava starch industry: New trends and review of alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1265-1275.
    20. Palacio-Ciro, Santiago & Vasco-Correa, Carlos Andrés, 2020. "Biofuels policy in Colombia: A reconfiguration to the sugar and palm sectors?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:126:y:2017:i:c:p:12-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.