IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v70y2017icp399-412.html
   My bibliography  Save this article

Tribology with biodiesel: A study on enhancing biodiesel stability and its fuel properties

Author

Listed:
  • Sundus, F.
  • Fazal, M.A.
  • Masjuki, H.H.

Abstract

Biodiesel is a potential renewable and biodegradable fuel source comprising of fatty acid methyl esters (FAME). It is produced from transesterification reaction of animal fats and vegetable oils. It has been selected as a suitable alternative to conventional diesel fuel as it furnishes several advantages such as reduced environmental emissions, renewability and enhanced lubricity. However, biodiesel poses various tribological challenges. It has compatibility issues with certain materials, is inherent instable and highly corrosive in nature. Sporadic efforts have been carried out to understand the aforementioned issues, however significant knowledge has not been obtained until yet, especially on stability of biodiesel of biodiesel and its lubrication behaviour. In this review, different tribological aspects of biodiesel have been highlighted by critically analysing the recent available literature. Commencing from the basics of tribology, this review extends towards the properties of biodiesel and various aspects of metal contamination, moisture absorption, temperature and storage time. Tribological issues arising due to the usage of biodiesel and the use of additives in order to stabilize biodiesel and improve its tribological compatibility have been examined. Various factors affecting the stability and usage of biodiesel (long term/short term), properties have been discussed and improvements in refining technologies for biodiesel production have been summarized. Major concerns ascribed have been reviewed and possible remedies to improve the stability of biodiesel have also been included.

Suggested Citation

  • Sundus, F. & Fazal, M.A. & Masjuki, H.H., 2017. "Tribology with biodiesel: A study on enhancing biodiesel stability and its fuel properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 399-412.
  • Handle: RePEc:eee:rensus:v:70:y:2017:i:c:p:399-412
    DOI: 10.1016/j.rser.2016.11.217
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116309832
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.11.217?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tomic, Milan & Savin, Lazar & Micic, Radoslav & Simikic, Mirko & Furman, Timofej, 2014. "Possibility of using biodiesel from sunflower oil as an additive for the improvement of lubrication properties of low-sulfur diesel fuel," Energy, Elsevier, vol. 65(C), pages 101-108.
    2. Stojković, Ivan J. & Stamenković, Olivera S. & Povrenović, Dragan S. & Veljković, Vlada B., 2014. "Purification technologies for crude biodiesel obtained by alkali-catalyzed transesterification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 1-15.
    3. Pullen, James & Saeed, Khizer, 2014. "Factors affecting biodiesel engine performance and exhaust emissions – Part I: Review," Energy, Elsevier, vol. 72(C), pages 1-16.
    4. Jaiyen, Siyada & Naree, Thikumporn & Ngamcharussrivichai, Chawalit, 2015. "Comparative study of natural dolomitic rock and waste mixed seashells as heterogeneous catalysts for the methanolysis of palm oil to biodiesel," Renewable Energy, Elsevier, vol. 74(C), pages 433-440.
    5. Maru, Marcia M. & Trommer, Rafael M. & Cavalcanti, Kátia F. & Figueiredo, Elizabeth S. & Silva, Rui F. & Achete, Carlos A., 2014. "The Stribeck curve as a suitable characterization method of the lubricity of biodiesel and diesel blends," Energy, Elsevier, vol. 69(C), pages 673-681.
    6. Haseeb, A.S.M.A. & Sia, S.Y. & Fazal, M.A. & Masjuki, H.H., 2010. "Effect of temperature on tribological properties of palm biodiesel," Energy, Elsevier, vol. 35(3), pages 1460-1464.
    7. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    8. Atadashi, I.M. & Aroua, M.K. & Aziz, A.R. Abdul & Sulaiman, N.M.N., 2011. "Refining technologies for the purification of crude biodiesel," Applied Energy, Elsevier, vol. 88(12), pages 4239-4251.
    9. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    10. Sarin, Amit & Singh, N.P. & Sarin, Rakesh & Malhotra, R.K., 2010. "Natural and synthetic antioxidants: Influence on the oxidative stability of biodiesel synthesized from non-edible oil," Energy, Elsevier, vol. 35(12), pages 4645-4648.
    11. Rizwanul Fattah, I.M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Masum, B.M. & Imtenan, S. & Ashraful, A.M., 2014. "Effect of antioxidants on oxidation stability of biodiesel derived from vegetable and animal based feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 356-370.
    12. Anastopoulos, G. & Lois, E. & Karonis, D. & Kalligeros, S. & Zannikos, F., 2005. "Impact of oxygen and nitrogen compounds on the lubrication properties of low sulfur diesel fuels," Energy, Elsevier, vol. 30(2), pages 415-426.
    13. Jakeria, M.R. & Fazal, M.A. & Haseeb, A.S.M.A., 2014. "Influence of different factors on the stability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 154-163.
    14. Karavalakis, Georgios & Hilari, Despina & Givalou, Lida & Karonis, Dimitrios & Stournas, Stamos, 2011. "Storage stability and ageing effect of biodiesel blends treated with different antioxidants," Energy, Elsevier, vol. 36(1), pages 369-374.
    15. Jain, Siddharth & Sharma, M.P., 2010. "Stability of biodiesel and its blends: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 667-678, February.
    16. How, H.G. & Masjuki, H.H. & Kalam, M.A. & Teoh, Y.H., 2014. "An investigation of the engine performance, emissions and combustion characteristics of coconut biodiesel in a high-pressure common-rail diesel engine," Energy, Elsevier, vol. 69(C), pages 749-759.
    17. Fazal, M.A. & Haseeb, A.S.M.A. & Masjuki, H.H., 2011. "Effect of temperature on the corrosion behavior of mild steel upon exposure to palm biodiesel," Energy, Elsevier, vol. 36(5), pages 3328-3334.
    18. Atadashi, I.M. & Aroua, M.K. & Aziz, A. Abdul, 2011. "Biodiesel separation and purification: A review," Renewable Energy, Elsevier, vol. 36(2), pages 437-443.
    19. Hu, Enzhu & Xu, Yufu & Hu, Xianguo & Pan, Lijun & Jiang, Shaotong, 2012. "Corrosion behaviors of metals in biodiesel from rapeseed oil and methanol," Renewable Energy, Elsevier, vol. 37(1), pages 371-378.
    20. Muñoz, M. & Moreno, F. & Monné, C. & Morea, J. & Terradillos, J., 2011. "Biodiesel improves lubricity of new low sulphur diesel fuels," Renewable Energy, Elsevier, vol. 36(11), pages 2918-2924.
    21. Sarin, Amit & Arora, Rajneesh & Singh, N.P. & Sharma, Meeta & Malhotra, R.K., 2009. "Influence of metal contaminants on oxidation stability of Jatropha biodiesel," Energy, Elsevier, vol. 34(9), pages 1271-1275.
    22. Fazal, M.A. & Haseeb, A.S.M.A. & Masjuki, H.H., 2011. "Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1314-1324, February.
    23. Pullen, James & Saeed, Khizer, 2014. "Factors affecting biodiesel engine performance and exhaust emissions – Part II: Experimental study," Energy, Elsevier, vol. 72(C), pages 17-34.
    24. Fazal, M.A. & Haseeb, A.S.M.A. & Masjuki, H.H., 2012. "Degradation of automotive materials in palm biodiesel," Energy, Elsevier, vol. 40(1), pages 76-83.
    25. Sorate, Kamalesh A. & Bhale, Purnanand V., 2015. "Biodiesel properties and automotive system compatibility issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 777-798.
    26. Shahabuddin, M. & Kalam, M.A. & Masjuki, H.H. & Bhuiya, M.M.K. & Mofijur, M., 2012. "An experimental investigation into biodiesel stability by means of oxidation and property determination," Energy, Elsevier, vol. 44(1), pages 616-622.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sidhu, Manpreet Singh & Roy, Murari Mohon & Wang, Wilson, 2018. "Glycerine emulsions of diesel-biodiesel blends and their performance and emissions in a diesel engine," Applied Energy, Elsevier, vol. 230(C), pages 148-159.
    2. Vardast, Neda & Haghighi, Mohammad & Dehghani, Sahar, 2019. "Sono-dispersion of calcium over Al-MCM-41used as a nanocatalyst for biodiesel production from sunflower oil: Influence of ultrasound irradiation and calcium content on catalytic properties and perform," Renewable Energy, Elsevier, vol. 132(C), pages 979-988.
    3. Seffati, Kambiz & Esmaeili, Hossein & Honarvar, Bizhan & Esfandiari, Nadia, 2020. "AC/CuFe2O4@CaO as a novel nanocatalyst to produce biodiesel from chicken fat," Renewable Energy, Elsevier, vol. 147(P1), pages 25-34.
    4. Fazal, M.A. & Jakeria, M.R. & Haseeb, A.S.M.A. & Rubaiee, Saeed, 2017. "Effect of antioxidants on the stability and corrosiveness of palm biodiesel upon exposure of different metals," Energy, Elsevier, vol. 135(C), pages 220-226.
    5. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    6. Nasha Wei & Zhi Chen & Yuandong Xu & Fengshou Gu & Andrew Ball, 2021. "The Investigation into the Tribological Impact of Alternative Fuels on Engines Based on Acoustic Emission," Energies, MDPI, vol. 14(8), pages 1-20, April.
    7. José Rodríguez-Fernández & Juan José Hernández & Alejandro Calle-Asensio & Ángel Ramos & Javier Barba, 2019. "Selection of Blends of Diesel Fuel and Advanced Biofuels Based on Their Physical and Thermochemical Properties," Energies, MDPI, vol. 12(11), pages 1-13, May.
    8. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Yang, Yung-Hun, 2017. "An overview of microdiesel — A sustainable future source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1078-1090.
    9. Khounani, Zahra & Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Sulaiman, Alawi & Goli, Sayed Amir Hossein & Tavassoli-Kafrani, Elham & Ghaffari, Akram & Rajaeifar, Mohammad Ali & Kim, Ki-Hyun, 2020. "Unlocking the potential of walnut husk extract in the production of waste cooking oil-based biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    10. Can, Özer & Baklacioglu, Tolga & Özturk, Erkan & Turan, Onder, 2022. "Artificial neural networks modeling of combustion parameters for a diesel engine fueled with biodiesel fuel," Energy, Elsevier, vol. 247(C).
    11. Fernandes, David M. & Squissato, André L. & Lima, Alexandre F. & Richter, Eduardo M. & Munoz, Rodrigo A.A., 2019. "Corrosive character of Moringa oleifera Lam biodiesel exposed to carbon steel under simulated storage conditions," Renewable Energy, Elsevier, vol. 139(C), pages 1263-1271.
    12. Varatharajan, K. & Pushparani, D.S., 2018. "Screening of antioxidant additives for biodiesel fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2017-2028.
    13. Chen, Hao & Su, Xin & Li, Junhui & Zhong, Xianglin, 2019. "Effects of gasoline and polyoxymethylene dimethyl ethers blending in diesel on the combustion and emission of a common rail diesel engine," Energy, Elsevier, vol. 171(C), pages 981-999.
    14. Carmen Mata & Jakub Piaszyk & José Antonio Soriano & José Martín Herreros & Athanasios Tsolakis & Karl Dearn, 2020. "Impact of Alternative Paraffinic Fuels on the Durability of a Modern Common Rail Injection System," Energies, MDPI, vol. 13(16), pages 1-14, August.
    15. Lin, Cherng-Yuan & Lu, Cherie, 2021. "Development perspectives of promising lignocellulose feedstocks for production of advanced generation biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    16. Wang, Yi-Tong & Cong, Wen-Jie & Zeng, Ya-Nan & Zhang, Yu-Qing & Liang, Jing-Long & Li, Jun-Guo & Jiang, Li-Qun & Fang, Zhen, 2021. "Direct production of biodiesel via simultaneous esterification and transesterification of renewable oils using calcined blast furnace dust," Renewable Energy, Elsevier, vol. 175(C), pages 1001-1011.
    17. Elsanusi, Osama Ahmed & Roy, Murari Mohon & Sidhu, Manpreet Singh, 2017. "Experimental Investigation on a Diesel Engine Fueled by Diesel-Biodiesel Blends and their Emulsions at Various Engine Operating Conditions," Applied Energy, Elsevier, vol. 203(C), pages 582-593.
    18. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakeria, M.R. & Fazal, M.A. & Haseeb, A.S.M.A., 2014. "Influence of different factors on the stability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 154-163.
    2. Fernandes, David M. & Squissato, André L. & Lima, Alexandre F. & Richter, Eduardo M. & Munoz, Rodrigo A.A., 2019. "Corrosive character of Moringa oleifera Lam biodiesel exposed to carbon steel under simulated storage conditions," Renewable Energy, Elsevier, vol. 139(C), pages 1263-1271.
    3. Rocabruno-Valdés, C.I. & González-Rodriguez, J.G. & Díaz-Blanco, Y. & Juantorena, A.U. & Muñoz-Ledo, J.A. & El-Hamzaoui, Y. & Hernández, J.A., 2019. "Corrosion rate prediction for metals in biodiesel using artificial neural networks," Renewable Energy, Elsevier, vol. 140(C), pages 592-601.
    4. Sorate, Kamalesh A. & Bhale, Purnanand V., 2015. "Biodiesel properties and automotive system compatibility issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 777-798.
    5. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.
    6. Shahabuddin, M. & Kalam, M.A. & Masjuki, H.H. & Bhuiya, M.M.K. & Mofijur, M., 2012. "An experimental investigation into biodiesel stability by means of oxidation and property determination," Energy, Elsevier, vol. 44(1), pages 616-622.
    7. Md Mofijur Rahman & Mohammad Rasul & Nur Md Sayeed Hassan, 2017. "Study on the Tribological Characteristics of Australian Native First Generation and Second Generation Biodiesel Fuel," Energies, MDPI, vol. 10(1), pages 1-16, January.
    8. Aamir Shehzad & Arslan Ahmed & Moinuddin Mohammed Quazi & Muhammad Jamshaid & S. M. Ashrafur Rahman & Masjuki Haji Hassan & Hafiz Muhammad Asif Javed, 2021. "Current Research and Development Status of Corrosion Behavior of Automotive Materials in Biofuels," Energies, MDPI, vol. 14(5), pages 1-36, March.
    9. Yaakob, Zahira & Narayanan, Binitha N. & Padikkaparambil, Silija & Unni K., Surya & Akbar P., Mohammed, 2014. "A review on the oxidation stability of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 136-153.
    10. Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.
    11. Lanjekar, R.D. & Deshmukh, D., 2016. "A review of the effect of the composition of biodiesel on NOx emission, oxidative stability and cold flow properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1401-1411.
    12. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    13. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    14. Roveda, Ana Carolina & Comin, Marina & Caires, Anderson Rodrigues Lima & Ferreira, Valdir Souza & Trindade, Magno Aparecido Gonçalves, 2016. "Thermal stability enhancement of biodiesel induced by a synergistic effect between conventional antioxidants and an alternative additive," Energy, Elsevier, vol. 109(C), pages 260-265.
    15. Rizwanul Fattah, I.M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Masum, B.M. & Imtenan, S. & Ashraful, A.M., 2014. "Effect of antioxidants on oxidation stability of biodiesel derived from vegetable and animal based feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 356-370.
    16. Flavio Caresana & Marco Bietresato & Massimiliano Renzi, 2021. "Injection and Combustion Analysis of Pure Rapeseed Oil Methyl Ester (RME) in a Pump-Line-Nozzle Fuel Injection System," Energies, MDPI, vol. 14(22), pages 1-25, November.
    17. Lamba, Bhawna Yadav & Joshi, Girdhar & Tiwari, Avanish K. & Rawat, Devendra Singh & Mallick, Sudesh, 2013. "Effect of antioxidants on physico-chemical properties of EURO-III HSD (high speed diesel) and Jatropha biodiesel blends," Energy, Elsevier, vol. 60(C), pages 222-229.
    18. Fazal, M.A. & Haseeb, A.S.M.A. & Masjuki, H.H., 2012. "Degradation of automotive materials in palm biodiesel," Energy, Elsevier, vol. 40(1), pages 76-83.
    19. Fazal, M.A. & Haseeb, A.S.M.A. & Masjuki, H.H., 2011. "Effect of temperature on the corrosion behavior of mild steel upon exposure to palm biodiesel," Energy, Elsevier, vol. 36(5), pages 3328-3334.
    20. Jin, Dingfeng & Zhou, Xuehua & Wu, Panpan & Jiang, Li & Ge, Hongliang, 2015. "Corrosion behavior of ASTM 1045 mild steel in palm biodiesel," Renewable Energy, Elsevier, vol. 81(C), pages 457-463.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:70:y:2017:i:c:p:399-412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.