IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v67y2017icp1153-1161.html
   My bibliography  Save this article

Assessment of bioenergy development potential and its environmental impact for rural household energy consumption: A case study in Shandong, China

Author

Listed:
  • Jiang, Zhixiang
  • Dai, Yanhui
  • Luo, Xianxiang
  • Liu, Guocheng
  • Wang, Hefang
  • Zheng, Hao
  • Wang, Zhenyu

Abstract

The status and changes of the rural household energy consumption (RHEC) and its pollutants emission in Shandong province, China, from 1995 to 2010 were assessed, as well as the reductions of the air pollutants by developing modern bioenergy (MBE). The results indicated that the RHEC significantly increased with annual growth rate of 1.04% during the study period, and significantly changed from the traditional energy use pattern to the commercial energy use pattern. The income effect (∆RErit) was identified as the critical factor responsible for the increased RHEC, while the energy intensity effect (∆REeit) and the population effect (∆RErpt) were the dominant factors responsible for the decreased RHEC. Correspondingly, total emissions of the majority pollutants including CO2, particulate matters (PMs), NOx and SO2 significantly increased with increasing RHEC, and positively correlated with the proportion of commercial energy (PCE) used in RHEC (r=0.821–0.992, P<0.05). In addition, CO emission showed a slight decreasing tendency in the same period. Based on the status of RHEC in 2010, the total development potential of MBE can reach up to 11.0×106tce, thus the emissions of CO2, CO, PMs and SO2 can be reduced by 64.8%, 90.6%, 78.7% and 64.2%, respectively. Unfortunately, the emission of NOx will increase by 31.8%, which is mainly due to the biomass-fired electricity rather than the coal-fired electricity. These results indicated that multiple benefits could be achieved through using the CS feedstock to develop the MBE products for RHEC.

Suggested Citation

  • Jiang, Zhixiang & Dai, Yanhui & Luo, Xianxiang & Liu, Guocheng & Wang, Hefang & Zheng, Hao & Wang, Zhenyu, 2017. "Assessment of bioenergy development potential and its environmental impact for rural household energy consumption: A case study in Shandong, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1153-1161.
  • Handle: RePEc:eee:rensus:v:67:y:2017:i:c:p:1153-1161
    DOI: 10.1016/j.rser.2016.09.085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116305755
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.09.085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Jin & Chen, Bin, 2014. "Emergy analysis of a biogas-linked agricultural system in rural China – A case study in Gongcheng Yao Autonomous County," Applied Energy, Elsevier, vol. 118(C), pages 173-182.
    2. Zheng, Xinye & Wei, Chu & Qin, Ping & Guo, Jin & Yu, Yihua & Song, Feng & Chen, Zhanming, 2014. "Characteristics of residential energy consumption in China: Findings from a household survey," Energy Policy, Elsevier, vol. 75(C), pages 126-135.
    3. Chen, Yu & Hu, Wei & Feng, Yongzhong & Sweeney, Sandra, 2014. "Status and prospects of rural biogas development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 679-685.
    4. Jiang, Dong & Zhuang, Dafang & Fu, Jinying & Huang, Yaohuan & Wen, Kege, 2012. "Bioenergy potential from crop residues in China: Availability and distribution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1377-1382.
    5. Zhou, Zhongren & Wu, Wenliang & Chen, Qun & Chen, Shufeng, 2008. "Study on sustainable development of rural household energy in northern China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2227-2239, October.
    6. Li, Canbing & He, Lina & Cao, Yijia & Xiao, Guoxuan & Zhang, Wei & Liu, Xiaohai & Yu, Zhicheng & Tan, Yi & Zhou, Jinju, 2014. "Carbon emission reduction potential of rural energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 254-262.
    7. Niu, Hewen & He, Yuanqing & Desideri, Umberto & Zhang, Peidong & Qin, Hongyi & Wang, Shijin, 2014. "Rural household energy consumption and its implications for eco-environments in NW China: A case study," Renewable Energy, Elsevier, vol. 65(C), pages 137-145.
    8. Zhang, Ming & Guo, Fangyan, 2013. "Analysis of rural residential commercial energy consumption in China," Energy, Elsevier, vol. 52(C), pages 222-229.
    9. Zhang, Lixiao & Yang, Zhifeng & Chen, Bin & Chen, Guoqian, 2009. "Rural energy in China: Pattern and policy," Renewable Energy, Elsevier, vol. 34(12), pages 2813-2823.
    10. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    11. Zheng, Y.H. & Li, Z.F. & Feng, S.F. & Lucas, M. & Wu, G.L. & Li, Y. & Li, C.H. & Jiang, G.M., 2010. "Biomass energy utilization in rural areas may contribute to alleviating energy crisis and global warming: A case study in a typical agro-village of Shandong, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3132-3139, December.
    12. Zhou, Zhongren & Wu, Wenliang & Wang, Xiaohua & Chen, Qun & Wang, Ou, 2009. "Analysis of changes in the structure of rural household energy consumption in northern China: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 187-193, January.
    13. Yao, Chunsheng & Chen, Chongying & Li, Ming, 2012. "Analysis of rural residential energy consumption and corresponding carbon emissions in China," Energy Policy, Elsevier, vol. 41(C), pages 445-450.
    14. Wu, C.Z. & Yin, X.L. & Yuan, Z.H. & Zhou, Z.Q. & Zhuang, X.S., 2010. "The development of bioenergy technology in China," Energy, Elsevier, vol. 35(11), pages 4445-4450.
    15. Liu, Wenling & Wang, Can & Mol, Arthur P.J., 2013. "Rural public acceptance of renewable energy deployment: The case of Shandong in China," Applied Energy, Elsevier, vol. 102(C), pages 1187-1196.
    16. Liu, Wenling & Spaargaren, Gert & Heerink, Nico & Mol, Arthur P.J. & Wang, Can, 2013. "Energy consumption practices of rural households in north China: Basic characteristics and potential for low carbon development," Energy Policy, Elsevier, vol. 55(C), pages 128-138.
    17. Hammond, Jim & Shackley, Simon & Sohi, Saran & Brownsort, Peter, 2011. "Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK," Energy Policy, Elsevier, vol. 39(5), pages 2646-2655, May.
    18. Liang, Long & Wu, Wenliang & Lal, Rattan & Guo, Yanbin, 2013. "Structural change and carbon emission of rural household energy consumption in Huantai, northern China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 767-776.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingwen Wu & Bingdong Hou & Ruo-Yu Ke & Yun-Fei Du & Ce Wang & Xiangzheng Li & Jiawei Cai & Tianqi Chen & Meixuan Teng & Jin Liu & Jin-Wei Wang & Hua Liao, 2017. "Residential Fuel Choice in Rural Areas: Field Research of Two Counties of North China," Sustainability, MDPI, vol. 9(4), pages 1-16, April.
    2. Tan, Caixia & Yu, Min & Wang, Jing & Geng, Shiping & Niu, Dongxiao & Tan, Zhongfu, 2022. "Feasibility study on the construction of multi-energy complementary systems in rural areas—Eastern, central, and western parts of China are taken as examples," Energy, Elsevier, vol. 249(C).
    3. Clancy, John Matthew & Curtis, John & Ó’Gallachóir, Brian, 2018. "Modelling national policy making to promote bioenergy in heat, transport and electricity to 2030 – Interactions, impacts and conflicts," Energy Policy, Elsevier, vol. 123(C), pages 579-593.
    4. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong & Li, Jiang, 2020. "Optimization of sustainable bioenergy production considering energy-food-water-land nexus and livestock manure under uncertainty," Agricultural Systems, Elsevier, vol. 184(C).
    5. Jingwen Wu & Bingdong Hou & Ruoyu Ke & Yun-Fei Du & Ce Wang & Xiangzheng Li & Jiawei Cai & Tianqi Chen & Meixuan Teng & Jin Liu & Jin-Wei Wang & Hua Liao, 2018. "Residential fuel choice in the rural: A field research on two counties of North China," CEEP-BIT Working Papers 109, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niu, Shuwen & Li, Zhen & Qiu, Xin & Dai, Runqi & Wang, Xiang & Qiang, Wenli & Hong, Zhenguo, 2019. "Measurement of effective energy consumption in China's rural household sector and policy implication," Energy Policy, Elsevier, vol. 128(C), pages 553-564.
    2. Min He & Pei Liu & Linwei Ma & Chinhao Chong & Xu Li & Shizhong Song & Zheng Li & Weidou Ni, 2018. "A Systems Analysis of the Development Status and Trends of Rural Household Energy in China," Energies, MDPI, vol. 11(7), pages 1-23, July.
    3. Li, Jianglong & Chen, Chang & Liu, Hongxun, 2019. "Transition from non-commercial to commercial energy in rural China: Insights from the accessibility and affordability," Energy Policy, Elsevier, vol. 127(C), pages 392-403.
    4. Wenheng Wu & Hongying Zhu & Yinghao Qu & Kaiying Xu, 2017. "Regional Disparities in Emissions of Rural Household Energy Consumption: A Case Study of Northwest China," Sustainability, MDPI, vol. 9(5), pages 1-17, May.
    5. Zhang, XiaoHong & Pan, HengYu & Cao, Jun & Li, JinRong, 2015. "Energy consumption of China’s crop production system and the related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 111-125.
    6. Lu Jiang & Xingpeng Chen & Bing Xue, 2019. "Features, Driving Forces and Transition of the Household Energy Consumption in China: A Review," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    7. Zhou, Qiang & Liu, Yong & Qu, Shen, 2022. "Emission effects of China's rural revitalization: The nexus of infrastructure investment, household income, and direct residential CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Li, Xue & Lin, Cong & Wang, Yang & Zhao, Lingying & Duan, Na & Wu, Xudong, 2015. "Analysis of rural household energy consumption and renewable energy systems in Zhangziying town of Beijing," Ecological Modelling, Elsevier, vol. 318(C), pages 184-193.
    9. Chen Zhang & Hua Liao & Zhifu Mi, 2019. "Climate impacts: temperature and electricity consumption," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1259-1275, December.
    10. Jingwen Wu & Bingdong Hou & Ruoyu Ke & Yun-Fei Du & Ce Wang & Xiangzheng Li & Jiawei Cai & Tianqi Chen & Meixuan Teng & Jin Liu & Jin-Wei Wang & Hua Liao, 2018. "Residential fuel choice in the rural: A field research on two counties of North China," CEEP-BIT Working Papers 109, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    11. Yin, Dongxue & Liu, Wei & Zhai, Ningning & Wang, Yandong & Ren, Chengjie & Yang, Gaihe, 2017. "Regional differentiation of rural household biogas development and related driving factors in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1008-1018.
    12. Liu, Wenling & Spaargaren, Gert & Heerink, Nico & Mol, Arthur P.J. & Wang, Can, 2013. "Energy consumption practices of rural households in north China: Basic characteristics and potential for low carbon development," Energy Policy, Elsevier, vol. 55(C), pages 128-138.
    13. Hongguang Nie & René Kemp & Véronique Vasseur, 2020. "Exploring the Changing Gap of Residential Energy Consumption per Capita in China and the Netherlands: A Comparative Analysis of Driving Forces," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
    14. Jingwen Wu & Bingdong Hou & Ruo-Yu Ke & Yun-Fei Du & Ce Wang & Xiangzheng Li & Jiawei Cai & Tianqi Chen & Meixuan Teng & Jin Liu & Jin-Wei Wang & Hua Liao, 2017. "Residential Fuel Choice in Rural Areas: Field Research of Two Counties of North China," Sustainability, MDPI, vol. 9(4), pages 1-16, April.
    15. Zhang, Ming & Guo, Fangyan, 2013. "Analysis of rural residential commercial energy consumption in China," Energy, Elsevier, vol. 52(C), pages 222-229.
    16. Zhang, Ming & Su, Bin, 2016. "Assessing China's rural household energy sustainable development using improved grouped principal component method," Energy, Elsevier, vol. 113(C), pages 509-514.
    17. Peng, Liqun & Zhang, Qiang & Yao, Zhiliang & Mauzerall, Denise L. & Kang, Sicong & Du, Zhenyu & Zheng, Yixuan & Xue, Tao & He, Kebin, 2019. "Underreported coal in statistics: A survey-based solid fuel consumption and emission inventory for the rural residential sector in China," Applied Energy, Elsevier, vol. 235(C), pages 1169-1182.
    18. Ma, Shaoyue & Man, Hecheng & Li, Xiao & Xu, Xiangbo & Sun, Mingxing & Xie, Minghui & Zhang, Linxiu, 2023. "How nonfarm employment drives the households’ energy transition: Evidence from rural China," Energy, Elsevier, vol. 267(C).
    19. Tao Lin & Junna Yan, 2017. "Investigating the sensitivity factors of household indirect CO2 emission from the production side," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 721-740, September.
    20. Jiang, Jingjing & Ye, Bin & Xie, Dejun & Li, Ji & Miao, Lixin & Yang, Peng, 2017. "Sector decomposition of China’s national economic carbon emissions and its policy implication for national ETS development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 855-867.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:67:y:2017:i:c:p:1153-1161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.