IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v66y2016icp852-860.html
   My bibliography  Save this article

Aspects and issues of daylighting assessment: A review study

Author

Listed:
  • Galatioto, A.
  • Beccali, M.

Abstract

Proper assessment of indoor daylighting conditions can significantly reduce energy consumption due to artificial lighting and can improve indoor visual comfort. This paper gives a critical review of the fundamental aspects of daylighting indices with the aim to provide a broad overview of methods and indices available to assess daylighting from varying points of view. Assessments cover distribution, availability over time and in specific climatic contexts, uniformity in the space, visual comfort issues and the relations between each of these aspects and a proper building and lighting design. A special focus on the assessment of indoor spatial and temporal uniformity is given. An analysis of the application of daylighting design by researchers and designers according to several area of interest is also presented.

Suggested Citation

  • Galatioto, A. & Beccali, M., 2016. "Aspects and issues of daylighting assessment: A review study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 852-860.
  • Handle: RePEc:eee:rensus:v:66:y:2016:i:c:p:852-860
    DOI: 10.1016/j.rser.2016.08.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116304336
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.08.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Acosta, Ignacio & Munoz, Carmen & Campano, Miguel Angel & Navarro, Jaime, 2015. "Analysis of daylight factors and energy saving allowed by windows under overcast sky conditions," Renewable Energy, Elsevier, vol. 77(C), pages 194-207.
    2. Li, Danny H.W. & Wong, S.L., 2007. "Daylighting and energy implications due to shading effects from nearby buildings," Applied Energy, Elsevier, vol. 84(12), pages 1199-1209, December.
    3. Aries, Myriam B.C. & Newsham, Guy R., 2008. "Effect of daylight saving time on lighting energy use: A literature review," Energy Policy, Elsevier, vol. 36(6), pages 1858-1866, June.
    4. Carlucci, Salvatore & Causone, Francesco & De Rosa, Francesco & Pagliano, Lorenzo, 2015. "A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 1016-1033.
    5. Chel, Arvind & Tiwari, G.N. & Chandra, Avinash, 2009. "A model for estimation of daylight factor for skylight: An experimental validation using pyramid shape skylight over vault roof mud-house in New Delhi (India)," Applied Energy, Elsevier, vol. 86(11), pages 2507-2519, November.
    6. Mayorga Pinilla, Santiago & Vázquez Moliní, Daniel & Álvarez Fernández-Balbuena, Antonio & Hernández Raboso, Gabriel & Herráez, Juan Antonio & Azcutia, Marta & García Botella, Ángel, 2016. "Advanced daylighting evaluation applied to cultural heritage buildings and museums: Application to the cloister of Santa Maria El Paular," Renewable Energy, Elsevier, vol. 85(C), pages 1362-1370.
    7. Greenup, P & Bell, J.M & Moore, I, 2001. "The importance of interior daylight distribution in buildings on overall energy performance," Renewable Energy, Elsevier, vol. 22(1), pages 45-52.
    8. Alrubaih, M.S. & Zain, M.F.M. & Alghoul, M.A. & Ibrahim, N.L.N. & Shameri, M.A. & Elayeb, Omkalthum, 2013. "Research and development on aspects of daylighting fundamentals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 494-505.
    9. Hee, W.J. & Alghoul, M.A. & Bakhtyar, B. & Elayeb, OmKalthum & Shameri, M.A. & Alrubaih, M.S. & Sopian, K., 2015. "The role of window glazing on daylighting and energy saving in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 323-343.
    10. Beccali, Marco & Bonomolo, Marina & Ciulla, Giuseppina & Galatioto, Alessandra & Lo Brano, Valerio, 2015. "Improvement of energy efficiency and quality of street lighting in South Italy as an action of Sustainable Energy Action Plans. The case study of Comiso (RG)," Energy, Elsevier, vol. 92(P3), pages 394-408.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kyung Sun Lee & Ki Jun Han & Jae Wook Lee, 2016. "Feasibility Study on Parametric Optimization of Daylighting in Building Shading Design," Sustainability, MDPI, vol. 8(12), pages 1-16, November.
    2. Beccali, Marco & Ciulla, Giuseppina & Lo Brano, Valerio & Galatioto, Alessandra & Bonomolo, Marina, 2017. "Artificial neural network decision support tool for assessment of the energy performance and the refurbishment actions for the non-residential building stock in Southern Italy," Energy, Elsevier, vol. 137(C), pages 1201-1218.
    3. Jie Li & Qichao Ban & Xueming (Jimmy) Chen & Jiawei Yao, 2019. "Glazing Sizing in Large Atrium Buildings: A Perspective of Balancing Daylight Quantity and Visual Comfort," Energies, MDPI, vol. 12(4), pages 1-14, February.
    4. Karthick, A. & Kalidasa Murugavel, K. & Kalaivani, L., 2018. "Performance analysis of semitransparent photovoltaic module for skylights," Energy, Elsevier, vol. 162(C), pages 798-812.
    5. Ignacio Acosta & Miguel Ángel Campano & Samuel Domínguez-Amarillo & Carmen Muñoz, 2018. "Dynamic Daylight Metrics for Electricity Savings in Offices: Window Size and Climate Smart Lighting Management," Energies, MDPI, vol. 11(11), pages 1-27, November.
    6. Yunsong Han & Hong Yu & Cheng Sun, 2017. "Simulation-Based Multiobjective Optimization of Timber-Glass Residential Buildings in Severe Cold Regions," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    7. Xianfeng Huang & Shangyou Wei & Shangyu Zhu, 2020. "Study on Daylighting Optimization in the Exhibition Halls of Museums for Chinese Calligraphy and Painting Works," Energies, MDPI, vol. 13(1), pages 1-15, January.
    8. D’Oca, Simona & Hong, Tianzhen & Langevin, Jared, 2018. "The human dimensions of energy use in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 731-742.
    9. Bonomolo, Marina & Zizzo, Gaetano & Ferrari, Simone & Beccali, Marco & Guarino, Stefania, 2021. "Empirical BAC factors method application to two real case studies in South Italy," Energy, Elsevier, vol. 236(C).
    10. Galatioto, A. & Ciulla, G. & Ricciu, R., 2017. "An overview of energy retrofit actions feasibility on Italian historical buildings," Energy, Elsevier, vol. 137(C), pages 991-1000.
    11. Xianfeng Huang & Shangyu Zhu, 2021. "Optimization of Daylighting Pattern of Museum Sculpture Exhibition Hall," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    12. Atthakorn Thongtha & Piromporn Boontham, 2020. "Experimental Investigation of Natural Lighting Systems Using Cylindrical Glass for Energy Saving in Buildings," Energies, MDPI, vol. 13(10), pages 1-12, May.
    13. Wong, Ing Liang, 2017. "A review of daylighting design and implementation in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 959-968.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gago, E.J. & Muneer, T. & Knez, M. & Köster, H., 2015. "Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1-13.
    2. Chel, Arvind & Tiwari, G.N. & Singh, H.N., 2010. "A modified model for estimation of daylight factor for skylight integrated with dome roof structure of mud-house in New Delhi (India)," Applied Energy, Elsevier, vol. 87(10), pages 3037-3050, October.
    3. Das, Aparna & Paul, Saikat Kumar, 2015. "Artificial illumination during daytime in residential buildings: Factors, energy implications and future predictions," Applied Energy, Elsevier, vol. 158(C), pages 65-85.
    4. Pilechiha, Peiman & Mahdavinejad, Mohammadjavad & Pour Rahimian, Farzad & Carnemolla, Phillippa & Seyedzadeh, Saleh, 2020. "Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency," Applied Energy, Elsevier, vol. 261(C).
    5. Xianfeng Huang & Shangyou Wei & Shangyu Zhu, 2020. "Study on Daylighting Optimization in the Exhibition Halls of Museums for Chinese Calligraphy and Painting Works," Energies, MDPI, vol. 13(1), pages 1-15, January.
    6. Galatioto, A. & Ciulla, G. & Ricciu, R., 2017. "An overview of energy retrofit actions feasibility on Italian historical buildings," Energy, Elsevier, vol. 137(C), pages 991-1000.
    7. Singh, Ramkishore & Lazarus, I.J. & Kishore, V.V.N., 2015. "Effect of internal woven roller shade and glazing on the energy and daylighting performances of an office building in the cold climate of Shillong," Applied Energy, Elsevier, vol. 159(C), pages 317-333.
    8. Marchini, F. & Chiatti, C. & Fabiani, C. & Pisello, A.L., 2023. "Development of an innovative translucent–photoluminescent coating for smart windows applications: An experimental and numerical investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    9. Chel, Arvind & Tiwari, G.N. & Chandra, Avinash, 2009. "A model for estimation of daylight factor for skylight: An experimental validation using pyramid shape skylight over vault roof mud-house in New Delhi (India)," Applied Energy, Elsevier, vol. 86(11), pages 2507-2519, November.
    10. Yu, Xu & Su, Yuehong, 2015. "Daylight availability assessment and its potential energy saving estimation –A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 494-503.
    11. Li, Danny H.W., 2010. "A review of daylight illuminance determinations and energy implications," Applied Energy, Elsevier, vol. 87(7), pages 2109-2118, July.
    12. Vassiliades, Constantinos & Michael, Aimilios & Savvides, Andreas & Kalogirou, Soteris, 2018. "Improvement of passive behaviour of existing buildings through the integration of active solar energy systems," Energy, Elsevier, vol. 163(C), pages 1178-1192.
    13. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    14. Tettey, Uniben Yao Ayikoe & Dodoo, Ambrose & Gustavsson, Leif, 2016. "Primary energy implications of different design strategies for an apartment building," Energy, Elsevier, vol. 104(C), pages 132-148.
    15. Xianfeng Huang & Shangyu Zhu, 2021. "Optimization of Daylighting Pattern of Museum Sculpture Exhibition Hall," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    16. Leccese, Francesco & Salvadori, Giacomo & Rocca, Michele, 2017. "Critical analysis of the energy performance indicators for road lighting systems in historical towns of central Italy," Energy, Elsevier, vol. 138(C), pages 616-628.
    17. Liu, Changyu & Wu, Yangyang & Bian, Ji & Li, Dong & Liu, Xiaoyan, 2018. "Influence of PCM design parameters on thermal and optical performance of multi-layer glazed roof," Applied Energy, Elsevier, vol. 212(C), pages 151-161.
    18. Michaux, Ghislain & Greffet, Rémy & Salagnac, Patrick & Ridoret, Jean-Baptiste, 2019. "Modelling of an airflow window and numerical investigation of its thermal performances by comparison to conventional double and triple-glazed windows," Applied Energy, Elsevier, vol. 242(C), pages 27-45.
    19. Karolis Banionis & Jurga Kumžienė & Arūnas Burlingis & Juozas Ramanauskas & Valdas Paukštys, 2021. "The Changes in Thermal Transmittance of Window Insulating Glass Units Depending on Outdoor Temperatures in Cold Climate Countries," Energies, MDPI, vol. 14(6), pages 1-22, March.
    20. Gigih Rahmandhani Setyantho & Hansaem Park & Seongju Chang, 2021. "Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts," Sustainability, MDPI, vol. 13(4), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:66:y:2016:i:c:p:852-860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.