IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p2198-d501493.html
   My bibliography  Save this article

Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts

Author

Listed:
  • Gigih Rahmandhani Setyantho

    (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea)

  • Hansaem Park

    (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea)

  • Seongju Chang

    (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea)

Abstract

Semi-transparent photovoltaic (STPV) windows, one of the building façade elements, can generate electricity and provide a certain amount of daylight for occupants. Nevertheless, expensive cost and unsatisfying indoor daylight performance in the room are common problems with STPV windows. This study investigates the thermal, daylight, energy, and life-cycle cost performance of STPV windows by considering varied window-to-wall ratios, building orientations, and STPV module types. The electricity balance index (elBI) indicator is proposed as one of the performance evaluation criteria. Two types of building models are established for this study: a rig-test building as the baseline building model and a KAIST campus research facility as the test building model along with the actual measurements and simulations using DesignBuilder. Results show that the STPV window in the Mediterranean climate demonstrates higher efficiency based on the elBI indicator. Decision-making analysis using the analytic hierarchy process and PROMETHEE II found weighting rates of 0.309, 0.076, and 0.465 for elBI, comfort, and cost criteria, respectively. Furthermore, lighting energy consumption becomes a critical variable for STPV module type selection, while a simple ON/OFF lighting control system can improve the elBI value by 0.02 ~ 0.04. Our research findings could potentially improve the decision-making process for building and urban energy systems selection in different climate types.

Suggested Citation

  • Gigih Rahmandhani Setyantho & Hansaem Park & Seongju Chang, 2021. "Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2198-:d:501493
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/2198/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/2198/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei Wang & Wei Zhang & Lingzhi Xie & Yupeng Wu & Hao Tian & Lin Zheng, 2018. "Experimental Assessment of the Energy Performance of a Double-Skin Semi-Transparent PV Window in the Hot-Summer and Cold-Winter Zone of China," Energies, MDPI, vol. 11(7), pages 1-14, July.
    2. Abdelhakim Mesloub & Ghazy Abdullah Albaqawy & Mohd Zin Kandar, 2020. "The Optimum Performance of Building Integrated Photovoltaic (BIPV) Windows Under a Semi-Arid Climate in Algerian Office Buildings," Sustainability, MDPI, vol. 12(4), pages 1-38, February.
    3. Cheng, Yuanda & Gao, Min & Dong, Jiankai & Jia, Jie & Zhao, Xudong & Li, Guiqiang, 2018. "Investigation on the daylight and overall energy performance of semi-transparent photovoltaic facades in cold climatic regions of China," Applied Energy, Elsevier, vol. 232(C), pages 517-526.
    4. Sorgato, M.J. & Schneider, K. & Rüther, R., 2018. "Technical and economic evaluation of thin-film CdTe building-integrated photovoltaics (BIPV) replacing façade and rooftop materials in office buildings in a warm and sunny climate," Renewable Energy, Elsevier, vol. 118(C), pages 84-98.
    5. Chae, Young Tae & Kim, Jeehwan & Park, Hongsik & Shin, Byungha, 2014. "Building energy performance evaluation of building integrated photovoltaic (BIPV) window with semi-transparent solar cells," Applied Energy, Elsevier, vol. 129(C), pages 217-227.
    6. Yasser Farghaly & Fatma Hassan, 2019. "A Simulated Study of Building Integrated Photovoltaics (BIPV) as an Approach for Energy Retrofit in Buildings," Energies, MDPI, vol. 12(20), pages 1-15, October.
    7. Cannavale, Alessandro & Hörantner, Maximilian & Eperon, Giles E. & Snaith, Henry J. & Fiorito, Francesco & Ayr, Ubaldo & Martellotta, Francesco, 2017. "Building integration of semitransparent perovskite-based solar cells: Energy performance and visual comfort assessment," Applied Energy, Elsevier, vol. 194(C), pages 94-107.
    8. Carlucci, Salvatore & Causone, Francesco & De Rosa, Francesco & Pagliano, Lorenzo, 2015. "A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 1016-1033.
    9. Chen, Mo & Zhang, Wei & Xie, Lingzhi & Ni, Zhichun & Wei, Qingzhu & Wang, Wei & Tian, Hao, 2019. "Experimental and numerical evaluation of the crystalline silicon PV window under the climatic conditions in southwest China," Energy, Elsevier, vol. 183(C), pages 584-598.
    10. Ng, Poh Khai & Mithraratne, Nalanie, 2014. "Lifetime performance of semi-transparent building-integrated photovoltaic (BIPV) glazing systems in the tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 736-745.
    11. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2018. "Passive design optimization of low energy buildings in different climates," Energy, Elsevier, vol. 165(PA), pages 591-613.
    12. Germán Ramos Ruiz & Carlos Fernández Bandera, 2017. "Validation of Calibrated Energy Models: Common Errors," Energies, MDPI, vol. 10(10), pages 1-19, October.
    13. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    14. Huang, Junchao & Chen, Xi & Yang, Hongxing & Zhang, Weilong, 2018. "Numerical investigation of a novel vacuum photovoltaic curtain wall and integrated optimization of photovoltaic envelope systems," Applied Energy, Elsevier, vol. 229(C), pages 1048-1060.
    15. Yuang Guo & Dewancker Bart, 2020. "Optimization of Design Parameters for Office Buildings with Climatic Adaptability Based on Energy Demand and Thermal Comfort," Sustainability, MDPI, vol. 12(9), pages 1-23, April.
    16. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2019. "Optimal design of renewable energy solution sets for net zero energy buildings," Energy, Elsevier, vol. 179(C), pages 1155-1175.
    17. Qiu, Changyu & Yang, Hongxing, 2020. "Daylighting and overall energy performance of a novel semi-transparent photovoltaic vacuum glazing in different climate zones," Applied Energy, Elsevier, vol. 276(C).
    18. Hyung Jun An & Jong Ho Yoon & Young Sub An & Eunnyeong Heo, 2018. "Heating and Cooling Performance of Office Buildings with a-Si BIPV Windows Considering Operating Conditions in Temperate Climates: The Case of Korea," Sustainability, MDPI, vol. 10(12), pages 1-19, December.
    19. Azhar Ghazali & Elias Salleh & Lim Chin Haw & Sohif Mat & Kamaruzzaman Sopian, 2017. "Feasibility of a vertical photovoltaic system on a high-rise building in Malaysia: economic evaluation," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(4), pages 349-357.
    20. Małgorzata Fedorczak-Cisak & Anna Kotowicz & Elżbieta Radziszewska-Zielina & Bartłomiej Sroka & Tadeusz Tatara & Krzysztof Barnaś, 2020. "Multi-Criteria Optimisation of an Experimental Complex of Single-Family Nearly Zero-Energy Buildings," Energies, MDPI, vol. 13(7), pages 1-30, March.
    21. Bertrand Mareschal & Jean Pierre Brans & Philippe Vincke, 1986. "How to select and how to rank projects: the Prométhée method," ULB Institutional Repository 2013/9307, ULB -- Universite Libre de Bruxelles.
    22. Brans, J. P. & Vincke, Ph. & Mareschal, B., 1986. "How to select and how to rank projects: The method," European Journal of Operational Research, Elsevier, vol. 24(2), pages 228-238, February.
    23. Elissaios Sarmas & Panos Xidonas & Haris Doukas, 2020. "Multicriteria Portfolio Construction with Python," Springer Optimization and Its Applications, Springer, number 978-3-030-53743-2, September.
    24. Peng, Jinqing & Curcija, Dragan C. & Lu, Lin & Selkowitz, Stephen E. & Yang, Hongxing & Zhang, Weilong, 2016. "Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate," Applied Energy, Elsevier, vol. 165(C), pages 345-356.
    25. Liao, Wei & Xu, Shen, 2015. "Energy performance comparison among see-through amorphous-silicon PV (photovoltaic) glazings and traditional glazings under different architectural conditions in China," Energy, Elsevier, vol. 83(C), pages 267-275.
    26. Daniel Efurosibina Attoye & Kheira Anissa Tabet Aoul & Ahmed Hassan, 2017. "A Review on Building Integrated Photovoltaic Façade Customization Potentials," Sustainability, MDPI, vol. 9(12), pages 1-24, December.
    27. Indre Siksnelyte-Butkiene & Edmundas Kazimieras Zavadskas & Dalia Streimikiene, 2020. "Multi-Criteria Decision-Making (MCDM) for the Assessment of Renewable Energy Technologies in a Household: A Review," Energies, MDPI, vol. 13(5), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanan S.S. Ibrahim & Ahmed Z. Khan & Waqas Ahmed Mahar & Shady Attia & Yehya Serag, 2021. "Assessment of Passive Retrofitting Scenarios in Heritage Residential Buildings in Hot, Dry Climates," Energies, MDPI, vol. 14(11), pages 1-27, June.
    2. Ružena Králiková & Ervin Lumnitzer & Laura Džuňová & Anna Yehorova, 2021. "Analysis of the Impact of Working Environment Factors on Employee’s Health and Wellbeing; Workplace Lighting Design Evaluation and Improvement," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    3. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    4. Li Zhu & Peng Wang & Yujiao Huo & Wei Tian & Yong Sun & Baoquan Yin, 2022. "Energy Savings Potential of Semitransparent Photovoltaic Skylights under Different Climate Conditions in China," Energies, MDPI, vol. 15(7), pages 1-17, March.
    5. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    6. Cheng, Yuanda & Gao, Min & Jia, Jie & Sun, Yanyi & Fan, Yi & Yu, Min, 2019. "An optimal and comparison study on daylight and overall energy performance of double-glazed photovoltaics windows in cold region of China," Energy, Elsevier, vol. 170(C), pages 356-366.
    7. Haitham Esam Rababah & Azhar Ghazali & Mohd Hafizal Mohd Isa, 2021. "Building Integrated Photovoltaic (BIPV) in Southeast Asian Countries: Review of Effects and Challenges," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    8. Peng, Jinqing & Curcija, Dragan C. & Thanachareonkit, Anothai & Lee, Eleanor S. & Goudey, Howdy & Selkowitz, Stephen E., 2019. "Study on the overall energy performance of a novel c-Si based semitransparent solar photovoltaic window," Applied Energy, Elsevier, vol. 242(C), pages 854-872.
    9. Wang, Chuyao & Ji, Jie & Yu, Bendong & Zhang, Chengyan & Ke, Wei & Wang, Jun, 2022. "Comprehensive investigation on the luminous and energy-saving performance of the double-skin ventilated window integrated with CdTe cells," Energy, Elsevier, vol. 238(PB).
    10. Wang, Chuyao & Ji, Jie & Uddin, Md Muin & Yu, Bendong & Song, Zhiying, 2021. "The study of a double-skin ventilated window integrated with CdTe cells in a rural building," Energy, Elsevier, vol. 215(PA).
    11. Cannavale, Alessandro & Ierardi, Laura & Hörantner, Maximilian & Eperon, Giles E. & Snaith, Henry J. & Ayr, Ubaldo & Martellotta, Francesco, 2017. "Improving energy and visual performance in offices using building integrated perovskite-based solar cells: A case study in Southern Italy," Applied Energy, Elsevier, vol. 205(C), pages 834-846.
    12. Alessandro Cannavale & Francesco Martellotta & Francesco Fiorito & Ubaldo Ayr, 2020. "The Challenge for Building Integration of Highly Transparent Photovoltaics and Photoelectrochromic Devices," Energies, MDPI, vol. 13(8), pages 1-24, April.
    13. Hyung Jun An & Jong Ho Yoon & Young Sub An & Eunnyeong Heo, 2018. "Heating and Cooling Performance of Office Buildings with a-Si BIPV Windows Considering Operating Conditions in Temperate Climates: The Case of Korea," Sustainability, MDPI, vol. 10(12), pages 1-19, December.
    14. Ayough, Ashkan & Boshruei, Setareh & Khorshidvand, Behrooz, 2022. "A new interactive method based on multi-criteria preference degree functions for solar power plant site selection," Renewable Energy, Elsevier, vol. 195(C), pages 1165-1173.
    15. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Wang, Fuqiang & Pei, Gang, 2021. "Daylighting utilization and uniformity comparison for a concentrator-photovoltaic window in energy saving application on the building," Energy, Elsevier, vol. 214(C).
    16. Ruxing Gao & Hyo On Nam & Won Il Ko & Hong Jang, 2017. "National Options for a Sustainable Nuclear Energy System: MCDM Evaluation Using an Improved Integrated Weighting Approach," Energies, MDPI, vol. 10(12), pages 1-24, December.
    17. Wu, Zhenghong & Zhang, Ling & Su, Xiaosong & Wu, Jing & Liu, Zhongbing, 2022. "Experimental and numerical analysis of naturally ventilated PV-DSF in a humid subtropical climate," Renewable Energy, Elsevier, vol. 200(C), pages 633-646.
    18. Simone Steinhilber & Jutta Geldermann & Martin Wietschel, 2016. "Renewables in the EU after 2020: a multi-criteria decision analysis in the context of the policy formation process," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 4(1), pages 119-155, June.
    19. Zhang, Weishi & Wang, Can & Zhang, Long & Xu, Ying & Cui, Yuanzheng & Lu, Zifeng & Streets, David G., 2018. "Evaluation of the performance of distributed and centralized biomass technologies in rural China," Renewable Energy, Elsevier, vol. 125(C), pages 445-455.
    20. Seddiki, Mohammed & Bennadji, Amar, 2019. "Multi-criteria evaluation of renewable energy alternatives for electricity generation in a residential building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 101-117.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2198-:d:501493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.