IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v229y2018icp1048-1060.html
   My bibliography  Save this article

Numerical investigation of a novel vacuum photovoltaic curtain wall and integrated optimization of photovoltaic envelope systems

Author

Listed:
  • Huang, Junchao
  • Chen, Xi
  • Yang, Hongxing
  • Zhang, Weilong

Abstract

This study presents a comprehensive investigation of the thermal and power performance of a novel vacuum photovoltaic insulated glass unit (VPV IGU) as well as an integrated design optimization of photovoltaic envelope systems. A prototype office building model with a curtain wall design is first constructed in EnergyPlus to compare the heat gain, heat loss, thermal load, lighting energy and PV generation for different curtain walls. The comparative analysis proves the excellent thermal insulating performance of VPV IGU, which can reduce up to 81.63% and 75.03% of the heat gain as well as 31.94% and 32.03% of the heat loss in Hong Kong (HK) and Harbin (HB) respectively. With the application of VPV IGU in all available facades of the prototype building, net energy savings of 37.79% and 39.82% can be achieved in diverse climatic conditions. Furthermore, screening and variance based sensitivity analyses are conducted to prioritize building integrated photovoltaic design parameters with respect to specific weather conditions. The selected important design parameters are then optimized with the non-dominated sorting genetic algorithm-II (NSGA-II), by which the optimum building design can achieve a net energy consumption reduction of 48.72% and 60.80% compared to benchmarking designs in Hong Kong and Harbin. Such an integrated design optimization can successfully improve computation efficiency with an acceptable solution accuracy, and assist the incorporation of PV envelop systems with passive architectural designs. The novel VPV IGU is determined to be more suitable for cold areas where the curtain wall design should also be avoided for energy conservation.

Suggested Citation

  • Huang, Junchao & Chen, Xi & Yang, Hongxing & Zhang, Weilong, 2018. "Numerical investigation of a novel vacuum photovoltaic curtain wall and integrated optimization of photovoltaic envelope systems," Applied Energy, Elsevier, vol. 229(C), pages 1048-1060.
  • Handle: RePEc:eee:appene:v:229:y:2018:i:c:p:1048-1060
    DOI: 10.1016/j.apenergy.2018.08.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918312662
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.08.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2016. "Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality," Applied Energy, Elsevier, vol. 174(C), pages 37-68.
    2. Méndez Echenagucia, Tomás & Capozzoli, Alfonso & Cascone, Ylenia & Sassone, Mario, 2015. "The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting energy performance analysis," Applied Energy, Elsevier, vol. 154(C), pages 577-591.
    3. van Hooff, T. & Blocken, B. & Timmermans, H.J.P. & Hensen, J.L.M., 2016. "Analysis of the predicted effect of passive climate adaptation measures on energy demand for cooling and heating in a residential building," Energy, Elsevier, vol. 94(C), pages 811-820.
    4. Omar, E. A. & Al-Ragom, F., 2002. "On the effect of glazing and code compliance," Applied Energy, Elsevier, vol. 71(2), pages 75-86, February.
    5. Wang, Meng & Peng, Jinqing & Li, Nianping & Lu, Lin & Ma, Tao & Yang, Hongxing, 2016. "Assessment of energy performance of semi-transparent PV insulating glass units using a validated simulation model," Energy, Elsevier, vol. 112(C), pages 538-548.
    6. Li, Danny H.W. & Lam, Tony N.T. & Chan, Wilco W.H. & Mak, Ada H.L., 2009. "Energy and cost analysis of semi-transparent photovoltaic in office buildings," Applied Energy, Elsevier, vol. 86(5), pages 722-729, May.
    7. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    8. Tian, Wei, 2013. "A review of sensitivity analysis methods in building energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 411-419.
    9. Skandalos, Nikolaos & Karamanis, Dimitris, 2015. "PV glazing technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 306-322.
    10. Khoroshiltseva, Marina & Slanzi, Debora & Poli, Irene, 2016. "A Pareto-based multi-objective optimization algorithm to design energy-efficient shading devices," Applied Energy, Elsevier, vol. 184(C), pages 1400-1410.
    11. Chen, Xi & Yang, Hongxing & Sun, Ke, 2017. "Developing a meta-model for sensitivity analyses and prediction of building performance for passively designed high-rise residential buildings," Applied Energy, Elsevier, vol. 194(C), pages 422-439.
    12. Mechri, Houcem Eddine & Capozzoli, Alfonso & Corrado, Vincenzo, 2010. "USE of the ANOVA approach for sensitive building energy design," Applied Energy, Elsevier, vol. 87(10), pages 3073-3083, October.
    13. Peng, Jinqing & Lu, Lin & Yang, Hongxing & Han, Jun, 2013. "Investigation on the annual thermal performance of a photovoltaic wall mounted on a multi-layer façade," Applied Energy, Elsevier, vol. 112(C), pages 646-656.
    14. Delgarm, N. & Sajadi, B. & Kowsary, F. & Delgarm, S., 2016. "Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO)," Applied Energy, Elsevier, vol. 170(C), pages 293-303.
    15. Chen, Xi & Yang, Hongxing & Zhang, Weilong, 2018. "Simulation-based approach to optimize passively designed buildings: A case study on a typical architectural form in hot and humid climates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P2), pages 1712-1725.
    16. Peng, Jinqing & Curcija, Dragan C. & Lu, Lin & Selkowitz, Stephen E. & Yang, Hongxing & Zhang, Weilong, 2016. "Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate," Applied Energy, Elsevier, vol. 165(C), pages 345-356.
    17. Liao, Wei & Xu, Shen, 2015. "Energy performance comparison among see-through amorphous-silicon PV (photovoltaic) glazings and traditional glazings under different architectural conditions in China," Energy, Elsevier, vol. 83(C), pages 267-275.
    18. Chen, Xi & Yang, Hongxing, 2017. "A multi-stage optimization of passively designed high-rise residential buildings in multiple building operation scenarios," Applied Energy, Elsevier, vol. 206(C), pages 541-557.
    19. Chen, Xi & Yang, Hongxing & Sun, Ke, 2016. "A holistic passive design approach to optimize indoor environmental quality of a typical residential building in Hong Kong," Energy, Elsevier, vol. 113(C), pages 267-281.
    20. Chen, Xi & Yang, Hongxing, 2018. "Integrated energy performance optimization of a passively designed high-rise residential building in different climatic zones of China," Applied Energy, Elsevier, vol. 215(C), pages 145-158.
    21. Ghosh, Aritra & Norton, Brian & Duffy, Aidan, 2016. "Measured thermal & daylight performance of an evacuated glazing using an outdoor test cell," Applied Energy, Elsevier, vol. 177(C), pages 196-203.
    22. Lu, Lin & Law, Kin Man, 2013. "Overall energy performance of semi-transparent single-glazed photovoltaic (PV) window for a typical office in Hong Kong," Renewable Energy, Elsevier, vol. 49(C), pages 250-254.
    23. Wang, Meng & Peng, Jinqing & Li, Nianping & Yang, Hongxing & Wang, Chunlei & Li, Xue & Lu, Tao, 2017. "Comparison of energy performance between PV double skin facades and PV insulating glass units," Applied Energy, Elsevier, vol. 194(C), pages 148-160.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xi & Yang, Hongxing & Peng, Jinqing, 2019. "Energy optimization of high-rise commercial buildings integrated with photovoltaic facades in urban context," Energy, Elsevier, vol. 172(C), pages 1-17.
    2. Mohammad Ghoraishi & Trevor Hyde & Aggelos Zacharopoulos & Jayanta Deb Mondol & Adrian Pugsley, 2023. "Experimental Characterization of the Optical Performance of Concentrating Photovoltaic Glazing (CoPVG) Systems," Energies, MDPI, vol. 16(6), pages 1-17, March.
    3. Jue Guo & Chong Zhang, 2022. "Utilization of Window System as Exhaust Air Heat Recovery Device and Its Energy Performance Evaluation: A Comparative Study," Energies, MDPI, vol. 15(9), pages 1-18, April.
    4. Tan, Yutong & Peng, Jinqing & Luo, Yimo & Li, Houpei & Wang, Meng & Zhang, Fujia & Ji, Jie & Song, Aotian, 2023. "Daylight-electrical-thermal coupling model for real-time zero-energy potential analysis of vacuum-photovoltaic glazing," Renewable Energy, Elsevier, vol. 205(C), pages 1040-1056.
    5. Gigih Rahmandhani Setyantho & Hansaem Park & Seongju Chang, 2021. "Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    6. Huang, Baofeng & Wang, Yeqing & Lu, Wensheng & Cheng, Meng, 2022. "Fabrication and energy efficiency of translucent concrete panel for building envelope," Energy, Elsevier, vol. 248(C).
    7. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    8. Barone, Giovanni & Buonomano, Annamaria & Chang, Roma & Forzano, Cesare & Giuzio, Giovanni Francesco & Mondol, Jayanta & Palombo, Adolfo & Pugsley, Adrian & Smyth, Mervyn & Zacharopoulos, Aggelos, 2022. "Modelling and simulation of building integrated Concentrating Photovoltaic/Thermal Glazing (CoPVTG) systems: Comprehensive energy and economic analysis," Renewable Energy, Elsevier, vol. 193(C), pages 1121-1131.
    9. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Rajvikram Madurai Elavarasan & Leoponraj Selvamanohar & Kannadasan Raju & Raghavendra Rajan Vijayaraghavan & Ramkumar Subburaj & Mohammad Nurunnabi & Irfan Ahmad Khan & Syed Afridhis & Akshaya Harihar, 2020. "A Holistic Review of the Present and Future Drivers of the Renewable Energy Mix in Maharashtra, State of India," Sustainability, MDPI, vol. 12(16), pages 1-33, August.
    11. Barone, Giovanni & Zacharopoulos, Aggelos & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Mondol, Jayanta & Palombo, Adolfo & Pugsley, Adrian & Smyth, Mervyn, 2022. "Concentrating PhotoVoltaic glazing (CoPVG) system: Modelling and simulation of smart building façade," Energy, Elsevier, vol. 238(PB).
    12. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    13. Huang, Junchao & Chen, Xi & Peng, Jinqing & Yang, Hongxing, 2021. "Modelling analyses of the thermal property and heat transfer performance of a novel compositive PV vacuum glazing," Renewable Energy, Elsevier, vol. 163(C), pages 1238-1252.
    14. Tan, Yutong & Peng, Jinqing & Luo, Yimo & Luo, Zhengyi & Curcija, Charlie & Fang, Yueping, 2022. "Numerical heat transfer modeling and climate adaptation analysis of vacuum-photovoltaic glazing," Applied Energy, Elsevier, vol. 312(C).
    15. Granados, Laura & Huang, Shujuan & McKenzie, David R. & Ho-Baillie, Anita W.Y., 2020. "The importance of total hemispherical emittance in evaluating performance of building-integrated silicon and perovskite solar cells in insulated glazings," Applied Energy, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    2. Chen, Xi & Yang, Hongxing, 2018. "Integrated energy performance optimization of a passively designed high-rise residential building in different climatic zones of China," Applied Energy, Elsevier, vol. 215(C), pages 145-158.
    3. Wang, Chuyao & Ji, Jie & Yu, Bendong & Zhang, Chengyan & Ke, Wei & Wang, Jun, 2022. "Comprehensive investigation on the luminous and energy-saving performance of the double-skin ventilated window integrated with CdTe cells," Energy, Elsevier, vol. 238(PB).
    4. Chen, Xi & Yang, Hongxing & Peng, Jinqing, 2019. "Energy optimization of high-rise commercial buildings integrated with photovoltaic facades in urban context," Energy, Elsevier, vol. 172(C), pages 1-17.
    5. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    6. Li, Hangxin & Wang, Shengwei & Cheung, Howard, 2018. "Sensitivity analysis of design parameters and optimal design for zero/low energy buildings in subtropical regions," Applied Energy, Elsevier, vol. 228(C), pages 1280-1291.
    7. Wang, Chuyao & Ji, Jie & Uddin, Md Muin & Yu, Bendong & Song, Zhiying, 2021. "The study of a double-skin ventilated window integrated with CdTe cells in a rural building," Energy, Elsevier, vol. 215(PA).
    8. Qiu, Changyu & Yang, Hongxing, 2020. "Daylighting and overall energy performance of a novel semi-transparent photovoltaic vacuum glazing in different climate zones," Applied Energy, Elsevier, vol. 276(C).
    9. Peng, Jinqing & Curcija, Dragan C. & Thanachareonkit, Anothai & Lee, Eleanor S. & Goudey, Howdy & Selkowitz, Stephen E., 2019. "Study on the overall energy performance of a novel c-Si based semitransparent solar photovoltaic window," Applied Energy, Elsevier, vol. 242(C), pages 854-872.
    10. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "Impact of adjustment strategies on building design process in different climates oriented by multiple performance," Applied Energy, Elsevier, vol. 266(C).
    11. Daniel Efurosibina Attoye & Kheira Anissa Tabet Aoul & Ahmed Hassan, 2017. "A Review on Building Integrated Photovoltaic Façade Customization Potentials," Sustainability, MDPI, vol. 9(12), pages 1-24, December.
    12. Wang, Chuyao & Yang, Hongxing & Ji, Jie, 2023. "Investigation on overall energy performance of a novel multi-functional PV/T window," Applied Energy, Elsevier, vol. 352(C).
    13. Wang, Meng & Peng, Jinqing & Li, Nianping & Yang, Hongxing & Wang, Chunlei & Li, Xue & Lu, Tao, 2017. "Comparison of energy performance between PV double skin facades and PV insulating glass units," Applied Energy, Elsevier, vol. 194(C), pages 148-160.
    14. Yu, Bendong & Li, Niansi & Ji, Jie & Wang, Chuyao, 2021. "Thermal, electrical and purification performance of a novel thermal-catalytic CdTe double-layer breathing window in winter," Renewable Energy, Elsevier, vol. 167(C), pages 313-332.
    15. Flor, Jan-Frederik & Liu, Dingming & Sun, Yanyi & Beccarelli, Paolo & Chilton, John & Wu, Yupeng, 2018. "Optical aspects and energy performance of switchable ethylene-tetrafluoroethylene (ETFE) foil cushions," Applied Energy, Elsevier, vol. 229(C), pages 335-351.
    16. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
    17. Nayara R. M. Sakiyama & Joyce C. Carlo & Leonardo Mazzaferro & Harald Garrecht, 2021. "Building Optimization through a Parametric Design Platform: Using Sensitivity Analysis to Improve a Radial-Based Algorithm Performance," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    18. Hao Tian & Wei Zhang & Lingzhi Xie & Yupeng Wu & Yanyi Sun & Mo Chen & Wei Wang & Xinwen Wu, 2018. "Study on the Energy Saving Potential for Semi-Transparent PV Window in Southwest China," Energies, MDPI, vol. 11(11), pages 1-13, November.
    19. Luo, Yongqiang & Zhang, Ling & Wang, Xiliang & Xie, Lei & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & He, Xihua, 2017. "A comparative study on thermal performance evaluation of a new double skin façade system integrated with photovoltaic blinds," Applied Energy, Elsevier, vol. 199(C), pages 281-293.
    20. Prada, A. & Gasparella, A. & Baggio, P., 2018. "On the performance of meta-models in building design optimization," Applied Energy, Elsevier, vol. 225(C), pages 814-826.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:229:y:2018:i:c:p:1048-1060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.