IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v60y2016icp284-305.html
   My bibliography  Save this article

Developments in in-situ (trans) esterification for biodiesel production: A critical review

Author

Listed:
  • Go, Alchris Woo
  • Sutanto, Sylviana
  • Ong, Lu Ki
  • Tran-Nguyen, Phuong Lan
  • Ismadji, Suryadi
  • Ju, Yi-Hsu

Abstract

Biodiesel is a biofuel used as an alternative for petroleum diesel. The main obstacle in the widespread use of biodiesel lies mainly on its cost and current state of the technology to process a wide array of feedstock. The cost of biodiesel production is still high compared to that of petroleum based diesel fuel. The decrease of production cost can be achieved through the utilization of cheap, low quality feedstock and the development of simpler production process. In-situ (trans) esterification (ISTE) is an alternative route in synthesizing or producing biodiesel. ISTE involves lesser steps as it eliminates the need for lipid or oil extraction prior to (trans)esterification. A detailed comparison of the various strategies, mechanism involved and technologies developed since 1985 on ISTE processes is described in this review. This review tackles several technological gaps needing to be bridged and addressed in future studies. Furthermore, future prospects and possible developments in ISTE is also looked into.

Suggested Citation

  • Go, Alchris Woo & Sutanto, Sylviana & Ong, Lu Ki & Tran-Nguyen, Phuong Lan & Ismadji, Suryadi & Ju, Yi-Hsu, 2016. "Developments in in-situ (trans) esterification for biodiesel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 284-305.
  • Handle: RePEc:eee:rensus:v:60:y:2016:i:c:p:284-305
    DOI: 10.1016/j.rser.2016.01.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116001003
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.01.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lim, Steven & Lee, Keat Teong, 2014. "Investigation of impurity tolerance and thermal stability for biodiesel production from Jatropha curcas L. seeds using supercritical reactive extraction," Energy, Elsevier, vol. 68(C), pages 71-79.
    2. Chuck, Christopher J. & Lou-Hing, Daniel & Dean, Rebecca & Sargeant, Lisa A. & Scott, Rod J. & Jenkins, Rhodri W., 2014. "Simultaneous microwave extraction and synthesis of fatty acid methyl ester from the oleaginous yeast Rhodotorula glutinis," Energy, Elsevier, vol. 69(C), pages 446-454.
    3. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    4. Lim, Steven & Lee, Keat Teong, 2013. "Process intensification for biodiesel production from Jatropha curcas L. seeds: Supercritical reactive extraction process parameters study," Applied Energy, Elsevier, vol. 103(C), pages 712-720.
    5. Li, Yuesong & Lian, Shuang & Tong, Dongmei & Song, Ruili & Yang, Wenyan & Fan, Yong & Qing, Renwei & Hu, Changwei, 2011. "One-step production of biodiesel from Nannochloropsis sp. on solid base Mg–Zr catalyst," Applied Energy, Elsevier, vol. 88(10), pages 3313-3317.
    6. Chen, Kang-Shin & Lin, Yuan-Chung & Hsu, Kuo-Hsiang & Wang, Hsin-Kai, 2012. "Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system," Energy, Elsevier, vol. 38(1), pages 151-156.
    7. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    8. Li, Qiang & Xu, Jingyang & Du, Wei & Li, Yang & Liu, Dehua, 2013. "Ethanol as the acyl acceptor for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 742-748.
    9. Banković-Ilić, Ivana B. & Stojković, Ivan J. & Stamenković, Olivera S. & Veljkovic, Vlada B. & Hung, Yung-Tse, 2014. "Waste animal fats as feedstocks for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 238-254.
    10. Ang, Gaik Tin & Tan, Kok Tat & Lee, Keat Teong, 2014. "Recent development and economic analysis of glycerol-free processes via supercritical fluid transesterification for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 61-70.
    11. Glisic, Sandra B. & Orlović, Aleksandar M., 2014. "Review of biodiesel synthesis from waste oil under elevated pressure and temperature: Phase equilibrium, reaction kinetics, process design and techno-economic study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 708-725.
    12. Huang, GuanHua & Chen, Feng & Wei, Dong & Zhang, XueWu & Chen, Gu, 2010. "Biodiesel production by microalgal biotechnology," Applied Energy, Elsevier, vol. 87(1), pages 38-46, January.
    13. Go, Alchris Woo & Sutanto, Sylviana & Zullaikah, Siti & Ismadji, Suryadi & Ju, Yi-Hsu, 2016. "A new approach in maximizing and direct utilization of whole Jatropha curcas L. kernels in biodiesel production – Technological improvement," Renewable Energy, Elsevier, vol. 85(C), pages 759-765.
    14. Abo El-Enin, S.A. & Attia, N.K. & El-Ibiari, N.N. & El-Diwani, G.I. & El-Khatib, K.M., 2013. "In-situ transesterification of rapeseed and cost indicators for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 471-477.
    15. Meng, Xin & Yang, Jianming & Xu, Xin & Zhang, Lei & Nie, Qingjuan & Xian, Mo, 2009. "Biodiesel production from oleaginous microorganisms," Renewable Energy, Elsevier, vol. 34(1), pages 1-5.
    16. Sawangkeaw, Ruengwit & Ngamprasertsith, Somkiat, 2013. "A review of lipid-based biomasses as feedstocks for biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 97-108.
    17. Hailegiorgis, Sintayehu Mekuria & Mahadzir, Shuhaimi & Subbarao, Duvvuri, 2011. "Enhanced in situ ethanolysis of Jatropha curcas L. in the presence of cetyltrimethylammonium bromide as a phase transfer catalyst," Renewable Energy, Elsevier, vol. 36(9), pages 2502-2507.
    18. Go, Alchris Woo & Tran Nguyen, Phuong Lan & Huynh, Lien Huong & Liu, Ying-Tsung & Sutanto, Sylviana & Ju, Yi-Hsu, 2014. "Catalyst free esterification of fatty acids with methanol under subcritical condition," Energy, Elsevier, vol. 70(C), pages 393-400.
    19. Lim, Steven & Teong, Lee Keat, 2010. "Recent trends, opportunities and challenges of biodiesel in Malaysia: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 938-954, April.
    20. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "The effects of water on biodiesel production and refining technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3456-3470.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sitepu, Eko K. & Heimann, Kirsten & Raston, Colin L. & Zhang, Wei, 2020. "Critical evaluation of process parameters for direct biodiesel production from diverse feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    2. Te, Kezia Gaile D. & Go, Alchris Woo & Wang, Hanneh Jonna D. & Guevarra, Reinell G. & Cabatingan, Luis K. & Tabañag, Ian Dominic F. & Angkawijaya, Artik Elisa & Ju, Yi-Hsu, 2020. "Extraction of lipids from post-hydrolysis copra cake with hexane as solvent: Kinetic and equilibrium data," Renewable Energy, Elsevier, vol. 158(C), pages 311-323.
    3. Sajjadi, Baharak & Raman, Abdul Aziz Abdul & Arandiyan, Hamidreza, 2016. "A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 62-92.
    4. Nayak, Milap G. & Vyas, Amish P., 2019. "Optimization of microwave-assisted biodiesel production from Papaya oil using response surface methodology," Renewable Energy, Elsevier, vol. 138(C), pages 18-28.
    5. Sulaiman Al Yahya & Tahir Iqbal & Muhammad Mubashar Omar & Munir Ahmad, 2021. "Techno-Economic Analysis of Fast Pyrolysis of Date Palm Waste for Adoption in Saudi Arabia," Energies, MDPI, vol. 14(19), pages 1-12, September.
    6. Bahadorian, Amirmahdi & Sadrameli, Seyed Mojtaba & Pahlavanzadeh, Hassan & Ilani Kashkouli, Mohammad Nabi, 2023. "Optimization study of linseed biodiesel production via in-situ transesterification and slow pyrolysis of obtained linseed residue," Renewable Energy, Elsevier, vol. 203(C), pages 10-19.
    7. Rastogi, Rajesh P. & Pandey, Ashok & Larroche, Christian & Madamwar, Datta, 2018. "Algal Green Energy – R&D and technological perspectives for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2946-2969.
    8. Quijote, Kristelle L. & Go, Alchris Woo & Angkawijaya, Artik Elisa & Santoso, Shella Permatasari & Gunarto, Chintya & Zullaikah, Siti, 2023. "Non-isothermal in-situ (trans)esterification of lipids in pre-functionalized and lipid-dense post-hydrolysis spent coffee grounds with subcritical methanol at low subcritical condition," Renewable Energy, Elsevier, vol. 206(C), pages 111-124.
    9. Zimmerman, William B. & Kokoo, Rungrote, 2018. "Esterification for biodiesel production with a phantom catalyst: Bubble mediated reactive distillation," Applied Energy, Elsevier, vol. 221(C), pages 28-40.
    10. Wong, Wan-Ying & Lim, Steven & Pang, Yean-Ling & Shuit, Siew-Hoong & Lam, Man-Kee & Tan, Inn-Shi & Chen, Wei-Hsin, 2023. "A comprehensive review of the production methods and effect of parameters for glycerol-free biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    11. Go, Alchris Woo & Quijote, Kristelle L. & Alivio, Roxanne Kathlyn O. & Ju, Yi-Hsu & Gunarto, Chintya & Angkawijaya, Artik Elisa & Santoso, Shella Permatasari & Yuliana, Maria, 2022. "Pre-functionalized and lipid-dense post-hydrolysis rice bran as feedstock for FAME production via non-isothermal in-situ (trans)esterification with subcritical methanol," Renewable Energy, Elsevier, vol. 189(C), pages 13-24.
    12. Verma, Puneet & Sharma, M.P., 2016. "Review of process parameters for biodiesel production from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1063-1071.
    13. Felix, Charles & Ubando, Aristotle & Madrazo, Cynthia & Gue, Ivan Henderson & Sutanto, Sylviana & Tran-Nguyen, Phuong Lan & Go, Alchris Woo & Ju, Yi-Hsu & Culaba, Alvin & Chang, Jo-Shu & Chen, Wei-Hsi, 2019. "Non-catalytic in-situ (trans) esterification of lipids in wet microalgae Chlorella vulgaris under subcritical conditions for the synthesis of fatty acid methyl esters," Applied Energy, Elsevier, vol. 248(C), pages 526-537.
    14. Migle Santaraite & Egle Sendzikiene & Violeta Makareviciene & Kiril Kazancev, 2020. "Biodiesel Production by Lipase-Catalyzed in Situ Transesterification of Rapeseed Oil Containing a High Free Fatty Acid Content with Ethanol in Diesel Fuel Media," Energies, MDPI, vol. 13(10), pages 1-12, May.
    15. Koytsoumpa, E.I. & Magiri – Skouloudi, D. & Karellas, S. & Kakaras, E., 2021. "Bioenergy with carbon capture and utilization: A review on the potential deployment towards a European circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sitepu, Eko K. & Heimann, Kirsten & Raston, Colin L. & Zhang, Wei, 2020. "Critical evaluation of process parameters for direct biodiesel production from diverse feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    2. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    3. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    4. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    5. Patel, Alok & Arora, Neha & Mehtani, Juhi & Pruthi, Vikas & Pruthi, Parul A., 2017. "Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 604-616.
    6. Patel, Alok & Arora, Neha & Sartaj, Km & Pruthi, Vikas & Pruthi, Parul A., 2016. "Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomasses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 836-855.
    7. Chakraborty, Rajat & Gupta, Abhishek.K. & Chowdhury, Ratul, 2014. "Conversion of slaughterhouse and poultry farm animal fats and wastes to biodiesel: Parametric sensitivity and fuel quality assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 120-134.
    8. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "The effects of water on biodiesel production and refining technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3456-3470.
    9. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    10. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    11. Manzano-Agugliaro, F. & Sanchez-Muros, M.J. & Barroso, F.G. & Martínez-Sánchez, A. & Rojo, S. & Pérez-Bañón, C., 2012. "Insects for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3744-3753.
    12. Shameer, P. Mohamed & Ramesh, K., 2018. "Assessment on the consequences of injection timing and injection pressure on combustion characteristics of sustainable biodiesel fuelled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 45-61.
    13. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Ashrafur Rahman, S.M. & Mahmudul, H.M., 2015. "Energy scenario and biofuel policies and targets in ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 51-61.
    14. Khairul Azly Zahan & Manabu Kano, 2018. "Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review," Energies, MDPI, vol. 11(8), pages 1-25, August.
    15. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Yang, Yung-Hun, 2017. "An overview of microdiesel — A sustainable future source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1078-1090.
    16. Kalam, M.A. & Ahamed, J.U. & Masjuki, H.H., 2012. "Land availability of Jatropha production in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3999-4007.
    17. Ahmad, A.L. & Yasin, N.H. Mat & Derek, C.J.C. & Lim, J.K., 2011. "Microalgae as a sustainable energy source for biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 584-593, January.
    18. Silitonga, A.S. & Masjuki, H.H. & Mahlia, T.M.I. & Ong, H.C. & Atabani, A.E. & Chong, W.T., 2013. "A global comparative review of biodiesel production from jatropha curcas using different homogeneous acid and alkaline catalysts: Study of physical and chemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 514-533.
    19. Nitièma-Yefanova, Svitlana & Coniglio, Lucie & Schneider, Raphaël & Nébié, Roger H.C. & Bonzi-Coulibaly, Yvonne L., 2016. "Ethyl biodiesel production from non-edible oils of Balanites aegyptiaca, Azadirachta indica, and Jatropha curcas seeds – Laboratory scale development," Renewable Energy, Elsevier, vol. 96(PA), pages 881-890.
    20. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "Production of biodiesel using high free fatty acid feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3275-3285.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:60:y:2016:i:c:p:284-305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.