IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i9p2502-2507.html
   My bibliography  Save this article

Enhanced in situ ethanolysis of Jatropha curcas L. in the presence of cetyltrimethylammonium bromide as a phase transfer catalyst

Author

Listed:
  • Hailegiorgis, Sintayehu Mekuria
  • Mahadzir, Shuhaimi
  • Subbarao, Duvvuri

Abstract

Limited solubility of alcohols in vegetable oils hinders transesterification reaction process. Phase transfer catalysis can be of great advantage to enhance the reaction rates. Addition of cetyltrimethylammonium bromide as a phase transfer catalyst on in situ transesterification of Jatropha curcas L. with alkaline ethanol was investigated. Use of cetyltrimethylammonium bromide increased the yield of fatty acid ethyl esters. Optimum operating conditions were experimentally established. Yield of fatty acid ethyl esters increased from 89.2 wt% to 99.5 wt% with reduced requirement of ethanol by 16.7 v%, sodium hydroxide catalyst by 33.3 wt%, at a lower temperature of 30 °C and reduced mixing speed in shorter reaction time. The quality of fatty acid ethyl esters fuel conforms to the standards of ASTM D6751 and EN-14214.

Suggested Citation

  • Hailegiorgis, Sintayehu Mekuria & Mahadzir, Shuhaimi & Subbarao, Duvvuri, 2011. "Enhanced in situ ethanolysis of Jatropha curcas L. in the presence of cetyltrimethylammonium bromide as a phase transfer catalyst," Renewable Energy, Elsevier, vol. 36(9), pages 2502-2507.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:9:p:2502-2507
    DOI: 10.1016/j.renene.2011.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111001157
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Go, Alchris Woo & Sutanto, Sylviana & Ong, Lu Ki & Tran-Nguyen, Phuong Lan & Ismadji, Suryadi & Ju, Yi-Hsu, 2016. "Developments in in-situ (trans) esterification for biodiesel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 284-305.
    2. Li, Qiang & Xu, Jingyang & Du, Wei & Li, Yang & Liu, Dehua, 2013. "Ethanol as the acyl acceptor for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 742-748.
    3. Kalam, M.A. & Ahamed, J.U. & Masjuki, H.H., 2012. "Land availability of Jatropha production in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3999-4007.
    4. Lourenço, Vitor Alves & Nadaleti, Willian Cézar & Vieira, Bruno Müller & Li, Hu, 2021. "Investigation of ethyl biodiesel via transesterification of rice bran oil: bioenergy from residual biomass in Pelotas, Rio Grande do Sul - Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
    2. Wu, Hong & Li, Yuanyuan & Chen, Lei & Zong, Minhua, 2011. "Production of microbial oil with high oleic acid content by Trichosporon capitatum," Applied Energy, Elsevier, vol. 88(1), pages 138-142, January.
    3. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2011. "Membrane biodiesel production and refining technology: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5051-5062.
    4. Sánchez-Arreola, Eugenio & Martin-Torres, Gerardo & Lozada-Ramírez, José D. & Hernández, Luis R. & Bandala-González, Erick R. & Bach, Horacio, 2015. "Biodiesel production and de-oiled seed cake nutritional values of a Mexican edible Jatropha curcas," Renewable Energy, Elsevier, vol. 76(C), pages 143-147.
    5. Shunli Feng & Yihan Guo & Yulu Ran & Qingzhuoma Yang & Xiyue Cao & Huahao Yang & Yu Cao & Qingrui Xu & Dairong Qiao & Hui Xu & Yi Cao, 2023. "Production of Microbial Lipids by Saitozyma podzolica Zwy2-3 Using Corn Straw Hydrolysate, the Analysis of Lipid Composition, and the Prediction of Biodiesel Properties," Energies, MDPI, vol. 16(18), pages 1-22, September.
    6. Ruxandra-Cristina Stanescu & Cristian-Ioan Leahu & Adrian Soica, 2023. "Aspects Regarding the Modelling and Optimization of the Transesterification Process through Temperature Control of the Chemical Reactor," Energies, MDPI, vol. 16(6), pages 1-17, March.
    7. Babatunde Oladipo & Tunde V Ojumu & Lekan M Latinwo & Eriola Betiku, 2020. "Pawpaw ( Carica papaya ) Peel Waste as a Novel Green Heterogeneous Catalyst for Moringa Oil Methyl Esters Synthesis: Process Optimization and Kinetic Study," Energies, MDPI, vol. 13(21), pages 1-25, November.
    8. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    9. Rawat, Devendra S. & Joshi, Girdhar & Lamba, Bhawna Y. & Tiwari, Avanish K. & Kumar, Pankaj, 2015. "The effect of binary antioxidant proportions on antioxidant synergy and oxidation stability of Jatropha and Karanja biodiesels," Energy, Elsevier, vol. 84(C), pages 643-655.
    10. Zhang, X.L. & Yan, S. & Tyagi, R.D. & Surampalli, R.Y., 2013. "Biodiesel production from heterotrophic microalgae through transesterification and nanotechnology application in the production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 216-223.
    11. Chattopadhyay, Soham & Karemore, Ankush & Das, Sancharini & Deysarkar, Asoke & Sen, Ramkrishna, 2011. "Biocatalytic production of biodiesel from cottonseed oil: Standardization of process parameters and comparison of fuel characteristics," Applied Energy, Elsevier, vol. 88(4), pages 1251-1256, April.
    12. Sojung Kim & Junyoung Seo & Sumin Kim, 2024. "Machine Learning Technologies in the Supply Chain Management Research of Biodiesel: A Review," Energies, MDPI, vol. 17(6), pages 1-15, March.
    13. Ramachandran, K. & Suganya, T. & Nagendra Gandhi, N. & Renganathan, S., 2013. "Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 410-418.
    14. Katagi, Kariyappa S. & Munnolli, Ravindra S. & Hosamani, Kallappa M., 2011. "Unique occurrence of unusual fatty acid in the seed oil of Aegle marmelos Corre: Screening the rich source of seed oil for bio-energy production," Applied Energy, Elsevier, vol. 88(5), pages 1797-1802, May.
    15. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues," Energies, MDPI, vol. 13(17), pages 1-12, August.
    16. Dawodu, Folasegun A. & Ayodele, Olubunmi & Xin, Jiayu & Zhang, Suojiang & Yan, Dongxia, 2014. "Effective conversion of non-edible oil with high free fatty acid into biodiesel by sulphonated carbon catalyst," Applied Energy, Elsevier, vol. 114(C), pages 819-826.
    17. Lian, Shuang & Li, Huijuan & Tang, Jinqiang & Tong, Dongmei & Hu, Changwei, 2012. "Integration of extraction and transesterification of lipid from jatropha seeds for the production of biodiesel," Applied Energy, Elsevier, vol. 98(C), pages 540-547.
    18. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    19. Blanco-Marigorta, A.M. & Suárez-Medina, J. & Vera-Castellano, A., 2013. "Exergetic analysis of a biodiesel production process from Jatropha curcas," Applied Energy, Elsevier, vol. 101(C), pages 218-225.
    20. Verma, Puneet & Sharma, M.P., 2016. "Review of process parameters for biodiesel production from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1063-1071.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:9:p:2502-2507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.