IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v59y2016icp352-378.html
   My bibliography  Save this article

Life cycle assessment (LCA) – from analysing methodology development to introducing an LCA framework for marine photovoltaic (PV) systems

Author

Listed:
  • Ling-Chin, J.
  • Heidrich, O.
  • Roskilly, A.P.

Abstract

Previously, life cycle assessment (LCA) focussing on principles or applications has been considerably reviewed. Still, an up-to-date review on LCA methodology development (rather than application) in a chronological order which embraces all life-cycle phases is lacking. The objectives of this article include scrutinising methodology development of conventional LCA phase by phase, providing clarification on goal and scope definition and life cycle inventory (LCI) analysis, discussing recent substantial development on life cycle impact assessment (LCIA) methodology and interpretation, and introducing an LCA framework for marine photovoltaic (PV) systems. For the study presented here, literature on LCA methodology development was categorised into Sample Groups A, B and C, comprising 15 review articles published in the last decade, 95 pieces of other literature types (with 83% journal articles), and 38 additional materials necessary for complementing an in-depth discussion respectively. A threefold analysis was performed to scrutinise and compare the literature in these sample groups. The analysis shows that for Sample Group A, the focus has steered from overarching LCA of all-embracing life cycle phases to single phase and then sole engagement with a specific topic; and for Sample Group B, 44% has reported the scientific endeavour on LCIA compared to other life cycle phases. Following clarification on system boundary, cut-off and existing LCI approaches including attributional, consequential, process based, input–output (IO) based etc., the methodology development of impact categories (covering impacts of water use, noise and working environment), uncertainty and sensitivity analyses are discussed. In addition, classification involving series and parallel mechanisms, LCIA development for space use, odour, non-ionising radiation and thermal pollution, rebound effects, renewability of resources, dynamic of environment and future scenario modelling in LCA context are identified as research needs and areas for future development. In compliance with ISO Standards and based on the findings, an LCA framework for marine PV systems (which exemplify the state-of-the-art development of renewable and sustainable energy in marine industry) is introduced to enhance the practical applicability and usefulness of the findings to LCA researchers.

Suggested Citation

  • Ling-Chin, J. & Heidrich, O. & Roskilly, A.P., 2016. "Life cycle assessment (LCA) – from analysing methodology development to introducing an LCA framework for marine photovoltaic (PV) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 352-378.
  • Handle: RePEc:eee:rensus:v:59:y:2016:i:c:p:352-378
    DOI: 10.1016/j.rser.2015.12.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115014410
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.12.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pannell, David J., 1997. "Sensitivity analysis of normative economic models: theoretical framework and practical strategies," Agricultural Economics, Blackwell, vol. 16(2), pages 139-152, May.
    2. Morales, Marjorie & Quintero, Julián & Conejeros, Raúl & Aroca, Germán, 2015. "Life cycle assessment of lignocellulosic bioethanol: Environmental impacts and energy balance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1349-1361.
    3. Ardente, Fulvio & Beccali, Marco & Cellura, Maurizio & Lo Brano, Valerio, 2008. "Energy performances and life cycle assessment of an Italian wind farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 200-217, January.
    4. Sherwani, A.F. & Usmani, J.A. & Varun, 2010. "Life cycle assessment of solar PV based electricity generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 540-544, January.
    5. Cho, Young Sang & Kim, Jeom Han & Hong, Seong Uk & Kim, Yuri, 2012. "LCA application in the optimum design of high rise steel structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3146-3153.
    6. Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.
    7. Tabata, Tomohiro & Torikai, Hitoshi & Tsurumaki, Mineo & Genchi, Yutaka & Ukegawa, Koji, 2011. "Life cycle assessment for co-firing semi-carbonized fuel manufactured using woody biomass with coal: A case study in the central area of Wakayama, Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2772-2778, August.
    8. Sharma, Aashish & Saxena, Abhishek & Sethi, Muneesh & Shree, Venu & Varun, 2011. "Life cycle assessment of buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 871-875, January.
    9. Parisi, Maria Laura & Maranghi, Simone & Basosi, Riccardo, 2014. "The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: A life cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 124-138.
    10. David Pennington & Pierre Crettaz & Annick Tauxe & Lorenz Rhomberg & Kevin Brand & Olivier Jolliet, 2002. "Assessing Human Health Response in Life Cycle Assessment Using ED10s and DALYs: Part 2—Noncancer Effects," Risk Analysis, John Wiley & Sons, vol. 22(5), pages 947-963, October.
    11. Wiloso, Edi Iswanto & Heijungs, Reinout & de Snoo, Geert R., 2012. "LCA of second generation bioethanol: A review and some issues to be resolved for good LCA practice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5295-5308.
    12. Tremeac, Brice & Meunier, Francis, 2009. "Life cycle analysis of 4.5Â MW and 250Â W wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2104-2110, October.
    13. Sumper, Andreas & Robledo-García, Mercedes & Villafáfila-Robles, Roberto & Bergas-Jané, Joan & Andrés-Peiró, Juan, 2011. "Life-cycle assessment of a photovoltaic system in Catalonia (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3888-3896.
    14. Bayer, Peter & Rybach, Ladislaus & Blum, Philipp & Brauchler, Ralf, 2013. "Review on life cycle environmental effects of geothermal power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 446-463.
    15. Faria, Ricardo & Marques, Pedro & Moura, Pedro & Freire, Fausto & Delgado, Joaquim & de Almeida, Aníbal T., 2013. "Impact of the electricity mix and use profile in the life-cycle assessment of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 271-287.
    16. Luo, Lin & van der Voet, Ester & Huppes, Gjalt, 2009. "Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1613-1619, August.
    17. Eric D. Williams & Christopher L. Weber & Troy R. Hawkins, 2009. "Hybrid Framework for Managing Uncertainty in Life Cycle Inventories," Journal of Industrial Ecology, Yale University, vol. 13(6), pages 928-944, December.
    18. Buyle, Matthias & Braet, Johan & Audenaert, Amaryllis, 2013. "Life cycle assessment in the construction sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 379-388.
    19. Arvesen, Anders & Hertwich, Edgar G., 2012. "Assessing the life cycle environmental impacts of wind power: A review of present knowledge and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5994-6006.
    20. Chauhan, Manish Kumar & Varun & Chaudhary, Sachin & Kumar, Suneel & Samar, 2011. "Life cycle assessment of sugar industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3445-3453, September.
    21. Lee, Kanghee & Tae, Sungho & Shin, Sungwoo, 2009. "Development of a Life Cycle Assessment Program for building (SUSB-LCA) in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1994-2002, October.
    22. Sangwon Suh & Bo Weidema & Jannick Hoejrup Schmidt & Reinout Heijungs, 2010. "Generalized Make and Use Framework for Allocation in Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 14(2), pages 335-353, March.
    23. Varun & Bhat, I.K. & Prakash, Ravi, 2009. "LCA of renewable energy for electricity generation systems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1067-1073, June.
    24. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    25. Islam, Hamidul & Jollands, Margaret & Setunge, Sujeeva, 2015. "Life cycle assessment and life cycle cost implication of residential buildings—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 129-140.
    26. Hou, Jian & Zhang, Peidong & Yuan, Xianzheng & Zheng, Yonghong, 2011. "Life cycle assessment of biodiesel from soybean, jatropha and microalgae in China conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5081-5091.
    27. J. W. Owens, 2001. "Water Resources in Life‐Cycle Impact Assessment: Considerations in Choosing Category Indicators," Journal of Industrial Ecology, Yale University, vol. 5(2), pages 37-54, April.
    28. Rashedi, A. & Sridhar, I. & Tseng, K.J., 2013. "Life cycle assessment of 50MW wind firms and strategies for impact reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 89-101.
    29. Peng, Jinqing & Lu, Lin & Yang, Hongxing, 2013. "Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 255-274.
    30. Lopes Silva, Diogo Aparecido & Delai, Ivete & Delgado Montes, Mary Laura & Roberto Ometto, Aldo, 2014. "Life cycle assessment of the sugarcane bagasse electricity generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 532-547.
    31. Shannon M. Lloyd & Robert Ries, 2007. "Characterizing, Propagating, and Analyzing Uncertainty in Life‐Cycle Assessment: A Survey of Quantitative Approaches," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 161-179, January.
    32. Bolin, Christopher A. & Smith, Stephen T., 2011. "Life cycle assessment of pentachlorophenol-treated wooden utility poles with comparisons to steel and concrete utility poles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2475-2486, June.
    33. Alessandra Zamagni & Paolo Masoni & Patrizia Buttol & Andrea Raggi & Roberto Buonamici, 2012. "Finding Life Cycle Assessment Research Direction with the Aid of Meta‐Analysis," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 39-52, April.
    34. Markus Berger & Matthias Finkbeiner, 2010. "Water Footprinting: How to Address Water Use in Life Cycle Assessment?," Sustainability, MDPI, vol. 2(4), pages 1-26, April.
    35. González-García, Sara & Luo, Lin & Moreira, Mª Teresa & Feijoo, Gumersindo & Huppes, Gjalt, 2009. "Life cycle assessment of flax shives derived second generation ethanol fueled automobiles in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1922-1933, October.
    36. Smakhtin, Vladimir U. & Revenga, C. & Doll, P., 2004. "Taking into account environmental water requirements in global-scale water resources assessments," IWMI Research Reports H031758, International Water Management Institute.
    37. Rehl, T. & Lansche, J. & Müller, J., 2012. "Life cycle assessment of energy generation from biogas—Attributional vs. consequential approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3766-3775.
    38. Zhang, Xiaoling & Shen, Liyin & Zhang, Lei, 2013. "Life cycle assessment of the air emissions during building construction process: A case study in Hong Kong," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 160-169.
    39. Asdrubali, Francesco & Baldinelli, Giorgio & D’Alessandro, Francesco & Scrucca, Flavio, 2015. "Life cycle assessment of electricity production from renewable energies: Review and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1113-1122.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Changbo & Chang, Yuan & Zhang, Lixiao & Chen, Yongsheng & Pang, Mingyue, 2018. "Quantifying uncertainties in greenhouse gas accounting of biomass power generation in China: System boundary and parameters," Energy, Elsevier, vol. 158(C), pages 121-127.
    2. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Zuo, Jian & Pullen, Stephen & Rameezdeen, Raufdeen & Bennetts, Helen & Wang, Yuan & Mao, Guozhu & Zhou, Zhihua & Du, Huibin & Duan, Huabo, 2017. "Green building evaluation from a life-cycle perspective in Australia: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 358-368.
    4. Zhang, Wei & Zhao, Oufan & Xie, Lingzhi & Li, Zihao & Wu, Xin & Zhong, Jianmei & Zeng, Xiding & Zou, Ruiwen, 2023. "Factors influence analysis and life cycle assessment of innovative bifacial photovoltaic applied on building facade," Energy, Elsevier, vol. 279(C).
    5. Perčić, Maja & Frković, Lovro & Pukšec, Tomislav & Ćosić, Boris & Li, Oi Lun & Vladimir, Nikola, 2022. "Life-cycle assessment and life-cycle cost assessment of power batteries for all-electric vessels for short-sea navigation," Energy, Elsevier, vol. 251(C).
    6. Mahmud, M.A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2020. "Life-cycle impact assessment of renewable electricity generation systems in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1028-1045.
    7. Marcelo Moya & Javier Martínez-Gómez & Esteban Urresta & Martín Cordovez-Dammer, 2022. "Feature Selection in Energy Consumption of Solar Catamaran INER 1 on Galapagos Island," Energies, MDPI, vol. 15(8), pages 1-17, April.
    8. Ling-Chin, Janie & Roskilly, Anthony P., 2016. "Investigating the implications of a new-build hybrid power system for Roll-on/Roll-off cargo ships from a sustainability perspective – A life cycle assessment case study," Applied Energy, Elsevier, vol. 181(C), pages 416-434.
    9. Mahmud, M.A. Parvez & Farjana, Shahjadi Hisan, 2022. "Comparative life cycle environmental impact assessment of renewable electricity generation systems: A practical approach towards Europe, North America and Oceania," Renewable Energy, Elsevier, vol. 193(C), pages 1106-1120.
    10. Maja Perčić & Nikola Vladimir & Marija Koričan, 2021. "Electrification of Inland Waterway Ships Considering Power System Lifetime Emissions and Costs," Energies, MDPI, vol. 14(21), pages 1-25, October.
    11. Velasquez-Orta, Sharon B. & Heidrich, Oliver & Black, Ken & Graham, David, 2018. "Retrofitting options for wastewater networks to achieve climate change reduction targets," Applied Energy, Elsevier, vol. 218(C), pages 430-441.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asdrubali, Francesco & Baldinelli, Giorgio & D’Alessandro, Francesco & Scrucca, Flavio, 2015. "Life cycle assessment of electricity production from renewable energies: Review and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1113-1122.
    2. Cao, Yijia & Wang, Xifan & Li, Yong & Tan, Yi & Xing, Jianbo & Fan, Ruixiang, 2016. "A comprehensive study on low-carbon impact of distributed generations on regional power grids: A case of Jiangxi provincial power grid in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 766-778.
    3. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    4. Gao, Cheng-kang & Na, Hong-ming & Song, Kai-hui & Dyer, Noel & Tian, Fan & Xu, Qing-jiang & Xing, Yu-hong, 2019. "Environmental impact analysis of power generation from biomass and wind farms in different locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 307-317.
    5. Riccardo Basosi & Roberto Bonciani & Dario Frosali & Giampaolo Manfrida & Maria Laura Parisi & Franco Sansone, 2020. "Life Cycle Analysis of a Geothermal Power Plant: Comparison of the Environmental Performance with Other Renewable Energy Systems," Sustainability, MDPI, vol. 12(7), pages 1-29, April.
    6. Zuo, Jian & Pullen, Stephen & Rameezdeen, Raufdeen & Bennetts, Helen & Wang, Yuan & Mao, Guozhu & Zhou, Zhihua & Du, Huibin & Duan, Huabo, 2017. "Green building evaluation from a life-cycle perspective in Australia: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 358-368.
    7. Mendecka, Barbara & Lombardi, Lidia, 2019. "Life cycle environmental impacts of wind energy technologies: A review of simplified models and harmonization of the results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 462-480.
    8. Campos-Guzmán, Verónica & García-Cáscales, M. Socorro & Espinosa, Nieves & Urbina, Antonio, 2019. "Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 343-366.
    9. Zhang, Chunbo & Hu, Mingming & Laclau, Benjamin & Garnesson, Thomas & Yang, Xining & Tukker, Arnold, 2021. "Energy-carbon-investment payback analysis of prefabricated envelope-cladding system for building energy renovation: Cases in Spain, the Netherlands, and Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Martínez-Rocamora, A. & Solís-Guzmán, J. & Marrero, M., 2016. "LCA databases focused on construction materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 565-573.
    11. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    12. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    13. Sokka, L. & Sinkko, T. & Holma, A. & Manninen, K. & Pasanen, K. & Rantala, M. & Leskinen, P., 2016. "Environmental impacts of the national renewable energy targets – A case study from Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1599-1610.
    14. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    15. Mahmud, M.A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2020. "Life-cycle impact assessment of renewable electricity generation systems in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1028-1045.
    16. Lopes Silva, Diogo Aparecido & Delai, Ivete & Delgado Montes, Mary Laura & Roberto Ometto, Aldo, 2014. "Life cycle assessment of the sugarcane bagasse electricity generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 532-547.
    17. Ramirez, A.D. & Boero, A. & Rivela, B. & Melendres, A.M. & Espinoza, S. & Salas, D.A., 2020. "Life cycle methods to analyze the environmental sustainability of electricity generation in Ecuador: Is decarbonization the right path?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Mahmud, M.A. Parvez & Farjana, Shahjadi Hisan, 2022. "Comparative life cycle environmental impact assessment of renewable electricity generation systems: A practical approach towards Europe, North America and Oceania," Renewable Energy, Elsevier, vol. 193(C), pages 1106-1120.
    19. Menoufi, Karim & Chemisana, Daniel & Rosell, Joan I., 2013. "Life Cycle Assessment of a Building Integrated Concentrated Photovoltaic scheme," Applied Energy, Elsevier, vol. 111(C), pages 505-514.
    20. Wang, Like & Wang, Yuan & Du, Huibin & Zuo, Jian & Yi Man Li, Rita & Zhou, Zhihua & Bi, Fenfen & Garvlehn, McSimon P., 2019. "A comparative life-cycle assessment of hydro-, nuclear and wind power: A China study," Applied Energy, Elsevier, vol. 249(C), pages 37-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:59:y:2016:i:c:p:352-378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.