IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v54y2016icp452-472.html
   My bibliography  Save this article

Full-scale, wind tunnel and CFD analysis methods of wind loads on heliostats: A review

Author

Listed:
  • Bendjebbas, H.
  • Abdellah-ElHadj, A.
  • Abbas, M.

Abstract

Optimum design of isolated units or fields of heliostats is depend upon obtaining realistic design wind loads. These structures may become even more sensitive to wind loads as gravity loads decrease through innovative technology. The presence of the wind affects the stability and the optical performance of the heliostat. Predicting wind loads is very important for developing heliostats with good performance. In this paper, the main analysis methods of wind loads on heliostat are investigated. The use of full-scale, wind tunnel or CFD analysis method is closely related to the parameters studied, the accuracy of results and the financial and material resources available. The comparison of methods shows that each method has its advantages and disadvantages depending on studied cases.

Suggested Citation

  • Bendjebbas, H. & Abdellah-ElHadj, A. & Abbas, M., 2016. "Full-scale, wind tunnel and CFD analysis methods of wind loads on heliostats: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 452-472.
  • Handle: RePEc:eee:rensus:v:54:y:2016:i:c:p:452-472
    DOI: 10.1016/j.rser.2015.10.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115011107
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.10.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yabei & Smith, Steven J. & Kyle, G. Page & Stackhouse Jr., Paul W., 2010. "Modeling the potential for thermal concentrating solar power technologies," Energy Policy, Elsevier, vol. 38(12), pages 7884-7897, December.
    2. Dorian, James P. & Franssen, Herman T. & Simbeck, Dale R., 2006. "Global challenges in energy," Energy Policy, Elsevier, vol. 34(15), pages 1984-1991, October.
    3. Kjärstad, Jan & Johnsson, Filip, 2009. "Resources and future supply of oil," Energy Policy, Elsevier, vol. 37(2), pages 441-464, February.
    4. Miller, Aaron & Chang, Byungik & Issa, Roy & Chen, Gerald, 2013. "Review of computer-aided numerical simulation in wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 122-134.
    5. Pavlović, Tomislav M. & Radonjić, Ivana S. & Milosavljević, Dragana D. & Pantić, Lana S., 2012. "A review of concentrating solar power plants in the world and their potential use in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3891-3902.
    6. Kandpal, Tara C. & Broman, Lars, 2014. "Renewable energy education: A global status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 300-324.
    7. Hernández-Moro, J. & Martínez-Duart, J.M., 2012. "CSP electricity cost evolution and grid parities based on the IEA roadmaps," Energy Policy, Elsevier, vol. 41(C), pages 184-192.
    8. Sun, Honghang & Gong, Bo & Yao, Qiang, 2014. "A review of wind loads on heliostats and trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 206-221.
    9. Lior, Noam, 2008. "Energy resources and use: The present situation and possible paths to the future," Energy, Elsevier, vol. 33(6), pages 842-857.
    10. Wu, Zhiyong & Gong, Bo & Wang, Zhifeng & Li, Zhengnong & Zang, Chuncheng, 2010. "An experimental and numerical study of the gap effect on wind load on heliostat," Renewable Energy, Elsevier, vol. 35(4), pages 797-806.
    11. Gong, Bo & Li, Zhengnong & Wang, Zhifeng & Wang, Yingge, 2012. "Wind-induced dynamic response of Heliostat," Renewable Energy, Elsevier, vol. 38(1), pages 206-213.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zuo, Hongyan & Tan, Jiqiu & Wei, Kexiang & Huang, Zhonghua & Zhong, Dingqing & Xie, Fuchun, 2021. "Effects of different poses and wind speeds on wind-induced vibration characteristics of a dish solar concentrator system," Renewable Energy, Elsevier, vol. 168(C), pages 1308-1326.
    2. Zhao, Yi & Li, Ruibin & Feng, Lu & Wu, Yan & Niu, Jianlei & Gao, Naiping, 2022. "Boundary layer wind tunnel tests of outdoor airflow field around urban buildings: A review of methods and status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Ji, Baifeng & Qiu, Penghui & Xu, Fan & Liu, Qimin & Zhang, Xu & Zhang, Longya, 2023. "Concentrating efficiency loss of heliostat with multiple sub-mirrors under wind loads," Energy, Elsevier, vol. 281(C).
    4. Talka, Ismo & Kolhe, Mohan & Hyttinen, Jarkko, 2017. "Impact of wind speed on ventilation performance within a container installed with photovoltaic inverter," Renewable Energy, Elsevier, vol. 113(C), pages 1480-1489.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mammar, Mohamed & Djouimaa, Sihem & Gärtner, Ulrich & Hamidat, Abderrahmane, 2018. "Wind loads on heliostats of various column heights: An experimental study," Energy, Elsevier, vol. 143(C), pages 867-880.
    2. Benoit, H. & Spreafico, L. & Gauthier, D. & Flamant, G., 2016. "Review of heat transfer fluids in tube-receivers used in concentrating solar thermal systems: Properties and heat transfer coefficients," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 298-315.
    3. Abiola-Ogedengbe, Ayodeji & Hangan, Horia & Siddiqui, Kamran, 2015. "Experimental investigation of wind effects on a standalone photovoltaic (PV) module," Renewable Energy, Elsevier, vol. 78(C), pages 657-665.
    4. Clifford K. Ho, 2014. "Computational fluid dynamics for concentrating solar power systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(3), pages 290-300, May.
    5. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    6. Haugom, Erik & Mydland, Ørjan & Pichler, Alois, 2016. "Long term oil prices," Energy Economics, Elsevier, vol. 58(C), pages 84-94.
    7. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2013. "Combustion performance and emission characteristics study of pine oil in a diesel engine," Energy, Elsevier, vol. 57(C), pages 344-351.
    8. Yang, Honglun & Wang, Qiliang & Huang, Xiaona & Li, Jing & Pei, Gang, 2018. "Performance study and comparative analysis of traditional and double-selective-coated parabolic trough receivers," Energy, Elsevier, vol. 145(C), pages 206-216.
    9. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    10. Choi, Seok Min & Park, Chang-Dae & Cho, Sung-Hoon & Lim, Byung-Ju, 2022. "Effects of wind loads on the solar panel array of a floating photovoltaic system – Experimental study and economic analysis," Energy, Elsevier, vol. 256(C).
    11. Zheng, Bobo & Xu, Jiuping & Ni, Ting & Li, Meihui, 2015. "Geothermal energy utilization trends from a technological paradigm perspective," Renewable Energy, Elsevier, vol. 77(C), pages 430-441.
    12. Bumann, A.A. & Papadokonstantakis, S. & Sugiyama, H. & Fischer, U. & Hungerbühler, K., 2010. "Evaluation and analysis of a proxy indicator for the estimation of gate-to-gate energy consumption in the early process design phases: The case of organic solvent production," Energy, Elsevier, vol. 35(6), pages 2407-2418.
    13. Islam, Aminul & Chan, Eng-Seng & Taufiq-Yap, Yun Hin & Mondal, Md. Alam Hossain & Moniruzzaman, M. & Mridha, Moniruzzaman, 2014. "Energy security in Bangladesh perspective—An assessment and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 154-171.
    14. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    15. Behroozeh, Samira & Hayati, Dariush & Karami, Ezatollah, 2022. "Determining and validating criteria to measure energy consumption sustainability in agricultural greenhouses," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    16. Köberle, Alexandre C. & Gernaat, David E.H.J. & van Vuuren, Detlef P., 2015. "Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation," Energy, Elsevier, vol. 89(C), pages 739-756.
    17. Mostafavi Tehrani, S. Saeed & Taylor, Robert A., 2016. "Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies," Applied Energy, Elsevier, vol. 179(C), pages 698-715.
    18. Lloyd, Bob & Subbarao, Srikanth, 2009. "Development challenges under the Clean Development Mechanism (CDM)--Can renewable energy initiatives be put in place before peak oil?," Energy Policy, Elsevier, vol. 37(1), pages 237-245, January.
    19. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    20. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:54:y:2016:i:c:p:452-472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.