IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v113y2017icp1480-1489.html
   My bibliography  Save this article

Impact of wind speed on ventilation performance within a container installed with photovoltaic inverter

Author

Listed:
  • Talka, Ismo
  • Kolhe, Mohan
  • Hyttinen, Jarkko

Abstract

PV inverter needs proper ventilation for reducing the heat dissipation of the electronic components. In this work, a container installed with PV inverter is considered with different configurations of cooling channels within the container for ventilation analysis. Typically, high capacity PV inverters are installed inside the container and therefore inverters, are not experiencing external wind effects and it depends on the configuration of cooling channels. In this work, the main cooling channel is located at the top of the inverter; inlet and outlet ventilation holes are located on the side of cross ventilation. They help in analyzing the cooling design, dependent on site specific wind flow direction of a container. Wind speeds and their directions can raise back pressures, which may be high enough to block the cooling air flow inside the channels. Reduction of cooling air flow reduces the fan capacity for dissipating the heat losses. In this study, cooling performance of outdoor container installed with PV inverter has been evaluated by using the Computational Fluid Dynamics (CFD) with two separate commercial packages, ANSYS CFX and Mentor Graphics FloEFD. Full scale size PV inverter prototype model has been used for experimental testing using the facility of the Wind Driven Rain equipment testing of the Toptester Limited (Finland). CFD numerical simulation results have been validated by comparing with the measured/experimental results. Wind flow volume rate results investigations have shown the cooling flow drop consequently with the head wind strength and also it has displayed the axial fan saddle region effect on the volume flow. Both the measurements and CFD results have shown significant turbulence in the inlet vent region of the main cooling channel.

Suggested Citation

  • Talka, Ismo & Kolhe, Mohan & Hyttinen, Jarkko, 2017. "Impact of wind speed on ventilation performance within a container installed with photovoltaic inverter," Renewable Energy, Elsevier, vol. 113(C), pages 1480-1489.
  • Handle: RePEc:eee:renene:v:113:y:2017:i:c:p:1480-1489
    DOI: 10.1016/j.renene.2017.07.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117306432
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.07.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bendjebbas, H. & Abdellah-ElHadj, A. & Abbas, M., 2016. "Full-scale, wind tunnel and CFD analysis methods of wind loads on heliostats: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 452-472.
    2. Calautit, John Kaiser & Hughes, Ben Richard & Shahzad, Sally Salome, 2015. "CFD and wind tunnel study of the performance of a uni-directional wind catcher with heat transfer devices," Renewable Energy, Elsevier, vol. 83(C), pages 85-99.
    3. Gökmen, Nuri & Hu, Weihao & Hou, Peng & Chen, Zhe & Sera, Dezso & Spataru, Sergiu, 2016. "Investigation of wind speed cooling effect on PV panels in windy locations," Renewable Energy, Elsevier, vol. 90(C), pages 283-290.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elham Fakhraian & Marc Alier & Francesc Valls Dalmau & Alireza Nameni & Maria José Casañ Guerrero, 2021. "The Urban Rooftop Photovoltaic Potential Determination," Sustainability, MDPI, vol. 13(13), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alsailani, M. & Montazeri, H. & Rezaeiha, A., 2021. "Towards optimal aerodynamic design of wind catchers: Impact of geometrical characteristics," Renewable Energy, Elsevier, vol. 168(C), pages 1344-1363.
    2. Calautit, John Kaiser & Hughes, Ben Richard, 2016. "A passive cooling wind catcher with heat pipe technology: CFD, wind tunnel and field-test analysis," Applied Energy, Elsevier, vol. 162(C), pages 460-471.
    3. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    4. Shiravi, Amir Hossein & Firoozzadeh, Mohammad & Lotfi, Marzieh, 2022. "Experimental study on the effects of air blowing and irradiance intensity on the performance of photovoltaic modules, using Central Composite Design," Energy, Elsevier, vol. 238(PA).
    5. Ji, Baifeng & Qiu, Penghui & Xu, Fan & Liu, Qimin & Zhang, Xu & Zhang, Longya, 2023. "Concentrating efficiency loss of heliostat with multiple sub-mirrors under wind loads," Energy, Elsevier, vol. 281(C).
    6. Wang, Zhaohua & Li, Yi & Wang, Ke & Huang, Zhimin, 2017. "Environment-adjusted operational performance evaluation of solar photovoltaic power plants: A three stage efficiency analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1153-1162.
    7. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.
    8. Adam Idzkowski & Karolina Karasowska & Wojciech Walendziuk, 2020. "Temperature Analysis of the Stand-Alone and Building Integrated Photovoltaic Systems Based on Simulation and Measurement Data," Energies, MDPI, vol. 13(16), pages 1-23, August.
    9. Wang, Jing-Yi & Qian, Zheng & Zareipour, Hamidreza & Wood, David, 2018. "Performance assessment of photovoltaic modules based on daily energy generation estimation," Energy, Elsevier, vol. 165(PB), pages 1160-1172.
    10. Calautit, John Kaiser & Hughes, Ben Richard & O’Connor, Dominic & Shahzad, Sally Salome, 2017. "Numerical and experimental analysis of a multi-directional wind tower integrated with vertically-arranged heat transfer devices (VHTD)," Applied Energy, Elsevier, vol. 185(P2), pages 1120-1135.
    11. Vivek Kumar & Amit Kumar & Hrishikesh Dhasmana & Abhishek Verma & PK Bhatnagar & VK Jain, 2018. "Efficiency enhancement of silicon solar cells using highly porous thermal cooling layer," Energy & Environment, , vol. 29(8), pages 1495-1511, December.
    12. Shahzad, Sally & Calautit, John Kaiser & Aquino, Angelo I. & Nasir, Diana S.N.M. & Hughes, Ben Richard, 2017. "A user-controlled thermal chair for an open plan workplace: CFD and field studies of thermal comfort performance," Applied Energy, Elsevier, vol. 207(C), pages 283-293.
    13. Kaddoura, Tarek O. & Ramli, Makbul A.M. & Al-Turki, Yusuf A., 2016. "On the estimation of the optimum tilt angle of PV panel in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 626-634.
    14. Xu, Xiao & Hu, Weihao & Cao, Di & Huang, Qi & Chen, Cong & Chen, Zhe, 2020. "Optimized sizing of a standalone PV-wind-hydropower station with pumped-storage installation hybrid energy system," Renewable Energy, Elsevier, vol. 147(P1), pages 1418-1431.
    15. Zhao, Yi & Li, Ruibin & Feng, Lu & Wu, Yan & Niu, Jianlei & Gao, Naiping, 2022. "Boundary layer wind tunnel tests of outdoor airflow field around urban buildings: A review of methods and status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Jomehzadeh, Fatemeh & Nejat, Payam & Calautit, John Kaiser & Yusof, Mohd Badruddin Mohd & Zaki, Sheikh Ahmad & Hughes, Ben Richard & Yazid, Muhammad Noor Afiq Witri Muhammad, 2017. "A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 736-756.
    17. Sungha Yoon & Jintae Park & Chaeyoung Lee & Sangkwon Kim & Yongho Choi & Soobin Kwak & Hyundong Kim & Junseok Kim, 2023. "Optimal Orientation of Solar Panels for Multi-Apartment Buildings," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    18. Petrakis Thomas & Aphrodite Ktena & Panagiotis Kosmopoulos & John Konstantaras & Michael Vrachopoulos, 2023. "Impact of Non-Uniform Irradiance and Temperature Distribution on the Performance of Photovoltaic Generators," Energies, MDPI, vol. 16(17), pages 1-20, August.
    19. Zeng, Cheng & Liu, Shuli & Shukla, Ashish, 2017. "A review on the air-to-air heat and mass exchanger technologies for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 753-774.
    20. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:113:y:2017:i:c:p:1480-1489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.