IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v53y2016icp59-67.html
   My bibliography  Save this article

Estimation of hourly global solar irradiation on tilted absorbers from horizontal one using Artificial Neural Network for case study of Mashhad

Author

Listed:
  • Shaddel, Mehdi
  • Javan, Dawood Seyed
  • Baghernia, Parisa

Abstract

Today, for providing clean energy, solar capturing facilities such as photovoltaic panels (PV) or solar thermal collectors (SCTs) have been increasingly installed worldwide. On the other side, lack of solar radiation data is one of the barriers for developing these technologies locally. Short-time step calculation of solar global irradiation (SGI) on inclined planes is required regarding to predict precise performance of solar systems, leading to enhance security operation's conditions and economic cost saving. Moreover, SGI values on tilted absorbers have a nonlinear relationship with several variables such as Horizontal Solar Global Irradiation, Extraterrestrial Horizontal Global Irradiation, and number of days, collector angle, solar altitude angle and the latitude of the location. Thus computation of SGI is neither readily to obtain nor easy to forecast. This paper is proposed on estimating accurate values of SGI on tilted planes via Artificial Neural Network (ANN). Indeed, ANNs are effective tools to model nonlinear systems and are widely used simulation software incorporated in MATLAB. Mashhad the second megacity of Iran is taken into account for the case study. The ANN is developed and optimized using every 30min of SGI data (6.00AM until 5.00PM) in 2013 on zero, 45° and 60° inclined planes respectively. These data have been gauged by pyranometers which are installed in Air & Solar Institute of Ferdowsi University of Mashhad. Meanwhile, the accuracies including R2 (Correlation Coefficient), MAE (Mean Absolute Error) and RMSE (Root Mean Square Error) are obtained 0.9242, 0.0284, 0.055 and 0.9302, 0.0269, 0.0549 for 60 and 45 tilted collectors respectively. Eventually it is concluded that ANN can be a reliable network and well capable for forecasting solar energy on slope solar absorbers in Mashhad.

Suggested Citation

  • Shaddel, Mehdi & Javan, Dawood Seyed & Baghernia, Parisa, 2016. "Estimation of hourly global solar irradiation on tilted absorbers from horizontal one using Artificial Neural Network for case study of Mashhad," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 59-67.
  • Handle: RePEc:eee:rensus:v:53:y:2016:i:c:p:59-67
    DOI: 10.1016/j.rser.2015.08.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115008692
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.08.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Alawi, S.M. & Al-Hinai, H.A., 1998. "An ANN-based approach for predicting global radiation in locations with no direct measurement instrumentation," Renewable Energy, Elsevier, vol. 14(1), pages 199-204.
    2. Notton, Gilles & Paoli, Christophe & Vasileva, Siyana & Nivet, Marie Laure & Canaletti, Jean-Louis & Cristofari, Christian, 2012. "Estimation of hourly global solar irradiation on tilted planes from horizontal one using artificial neural networks," Energy, Elsevier, vol. 39(1), pages 166-179.
    3. Guo, Qing-chun & He, Zhen-fang & Li, Li & Kong, Ling-jun & Zhang, Xiao-yong & Kou, Li-qun, 2011. "A Prediction Model of Peasants’ Income in China Based on BP Neural Network," Asian Agricultural Research, USA-China Science and Culture Media Corporation, vol. 3(04), pages 1-4, April.
    4. Dorvlo, Atsu S. S. & Jervase, Joseph A. & Al-Lawati, Ali, 2002. "Solar radiation estimation using artificial neural networks," Applied Energy, Elsevier, vol. 71(4), pages 307-319, April.
    5. Voyant, Cyril & Muselli, Marc & Paoli, Christophe & Nivet, Marie-Laure, 2011. "Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation," Energy, Elsevier, vol. 36(1), pages 348-359.
    6. Fadare, D.A., 2009. "Modelling of solar energy potential in Nigeria using an artificial neural network model," Applied Energy, Elsevier, vol. 86(9), pages 1410-1422, September.
    7. Mohandes, M. & Rehman, S. & Halawani, T.O., 1998. "Estimation of global solar radiation using artificial neural networks," Renewable Energy, Elsevier, vol. 14(1), pages 179-184.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dey, Sumon & Lakshmanan, Madan Kumar & Pesala, Bala, 2018. "Optimal solar tree design for increased flexibility in seasonal energy extraction," Renewable Energy, Elsevier, vol. 125(C), pages 1038-1048.
    2. Rodríguez, Fermín & Martín, Fernando & Fontán, Luis & Galarza, Ainhoa, 2021. "Ensemble of machine learning and spatiotemporal parameters to forecast very short-term solar irradiation to compute photovoltaic generators’ output power," Energy, Elsevier, vol. 229(C).
    3. Strušnik, Dušan & Brandl, Daniel & Schober, Helmut & Ferčec, Janko & Avsec, Jurij, 2020. "A simulation model of the application of the solar STAF panel heat transfer and noise reduction with and without a transparent plate: A renewable energy review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Nicolás-Martín, Carolina & Santos-Martín, David & Chinchilla-Sánchez, Mónica & Lemon, Scott, 2020. "A global annual optimum tilt angle model for photovoltaic generation to use in the absence of local meteorological data," Renewable Energy, Elsevier, vol. 161(C), pages 722-735.
    5. Hafez, A.Z. & Soliman, A. & El-Metwally, K.A. & Ismail, I.M., 2017. "Tilt and azimuth angles in solar energy applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 147-168.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kılıç, Fatih & Yılmaz, İbrahim Halil & Kaya, Özge, 2021. "Adaptive co-optimization of artificial neural networks using evolutionary algorithm for global radiation forecasting," Renewable Energy, Elsevier, vol. 171(C), pages 176-190.
    2. Notton, Gilles & Paoli, Christophe & Ivanova, Liliana & Vasileva, Siyana & Nivet, Marie Laure, 2013. "Neural network approach to estimate 10-min solar global irradiation values on tilted planes," Renewable Energy, Elsevier, vol. 50(C), pages 576-584.
    3. Notton, Gilles & Paoli, Christophe & Vasileva, Siyana & Nivet, Marie Laure & Canaletti, Jean-Louis & Cristofari, Christian, 2012. "Estimation of hourly global solar irradiation on tilted planes from horizontal one using artificial neural networks," Energy, Elsevier, vol. 39(1), pages 166-179.
    4. Zarzo, Manuel & Martí, Pau, 2011. "Modeling the variability of solar radiation data among weather stations by means of principal components analysis," Applied Energy, Elsevier, vol. 88(8), pages 2775-2784, August.
    5. Shubham Gupta & Amit Kumar Singh & Sachin Mishra & Pradeep Vishnuram & Nagaraju Dharavat & Narayanamoorthi Rajamanickam & Ch. Naga Sai Kalyan & Kareem M. AboRas & Naveen Kumar Sharma & Mohit Bajaj, 2023. "Estimation of Solar Radiation with Consideration of Terrestrial Losses at a Selected Location—A Review," Sustainability, MDPI, vol. 15(13), pages 1-29, June.
    6. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2012. "A review of solar energy modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2864-2869.
    7. Khalil, Samy A. & Shaffie, A.M., 2013. "A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 853-863.
    8. Khalil, Samy A. & Shaffie, A.M., 2016. "Evaluation of transposition models of solar irradiance over Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 105-119.
    9. Yadav, Amit Kumar & Malik, Hasmat & Chandel, S.S., 2014. "Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 509-519.
    10. Heo, Jae & Jung, Jaehoon & Kim, Byungil & Han, SangUk, 2020. "Digital elevation model-based convolutional neural network modeling for searching of high solar energy regions," Applied Energy, Elsevier, vol. 262(C).
    11. Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
    12. Linares-Rodríguez, Alvaro & Ruiz-Arias, José Antonio & Pozo-Vázquez, David & Tovar-Pescador, Joaquín, 2011. "Generation of synthetic daily global solar radiation data based on ERA-Interim reanalysis and artificial neural networks," Energy, Elsevier, vol. 36(8), pages 5356-5365.
    13. Almonacid, F. & Fernández, Eduardo F. & Rodrigo, P. & Pérez-Higueras, P.J. & Rus-Casas, C., 2013. "Estimating the maximum power of a High Concentrator Photovoltaic (HCPV) module using an Artificial Neural Network," Energy, Elsevier, vol. 53(C), pages 165-172.
    14. Kheradmanda, Saeid & Nematollahi, Omid & Ayoobia, Ahmad Reza, 2016. "Clearness index predicting using an integrated artificial neural network (ANN) approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1357-1365.
    15. Deo, Ravinesh C. & Wen, Xiaohu & Qi, Feng, 2016. "A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset," Applied Energy, Elsevier, vol. 168(C), pages 568-593.
    16. Voyant, Cyril & Paoli, Christophe & Muselli, Marc & Nivet, Marie-Laure, 2013. "Multi-horizon solar radiation forecasting for Mediterranean locations using time series models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 44-52.
    17. Hejase, Hassan A.N. & Al-Shamisi, Maitha H. & Assi, Ali H., 2014. "Modeling of global horizontal irradiance in the United Arab Emirates with artificial neural networks," Energy, Elsevier, vol. 77(C), pages 542-552.
    18. Jiang, Yingni, 2008. "Prediction of monthly mean daily diffuse solar radiation using artificial neural networks and comparison with other empirical models," Energy Policy, Elsevier, vol. 36(10), pages 3833-3837, October.
    19. Dahmani, Kahina & Notton, Gilles & Voyant, Cyril & Dizene, Rabah & Nivet, Marie Laure & Paoli, Christophe & Tamas, Wani, 2016. "Multilayer Perceptron approach for estimating 5-min and hourly horizontal global irradiation from exogenous meteorological data in locations without solar measurements," Renewable Energy, Elsevier, vol. 90(C), pages 267-282.
    20. Kisi, Ozgur, 2014. "Modeling solar radiation of Mediterranean region in Turkey by using fuzzy genetic approach," Energy, Elsevier, vol. 64(C), pages 429-436.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:53:y:2016:i:c:p:59-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.