IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v51y2015icp910-925.html
   My bibliography  Save this article

Bolivia and Paraguay: A beacon for sustainable electric mobility?

Author

Listed:
  • Sauer, Ildo L.
  • Escobar, Javier F.
  • da Silva, Mauro F.P.
  • Meza, Carlos G.
  • Centurion, Carlos
  • Goldemberg, José

Abstract

This paper presents a review of studies and data on lithium resources and batteries and on electric cars, alongside with an exploratory study of the feasibility of replacing car fleet for personal transportation, using internal combustion engines (ICE), currently used in Paraguay and Bolivia, by equivalent electric vehicles. The energy mixes and natural resources of Bolivia and Paraguay ensue a unique opportunity for the development and production of electric cars in Latin America. Economic, energy, environmental, mineral resources criteria are considered. The introduction of electric mobility is evaluated in two scenarios: first, with electric vehicles available in the international market (EV); and, alternatively, with the implementation and development of local lithium ion (Li-ion) batteries and electric vehicles industries. Electric vehicles with Li-ion battery (BEV) could be built leveraging on the strategic advantages of natural resources from the Uyuni Salt Lake – Bolivia and the availability of electricity in Paraguay from the Itaipu hydro-power plant, as well as from Bolivian natural gas and renewable resources. The battery industry could be located in Bolivia while the Latin-American electric vehicle (LEV) industry could be based in Paraguay. Estimates conducted in this study show that replacement of existing fleet with (LEV) in the period of 10 years, the cumulative economic benefits for Paraguay are US$ 996 million and Bolivia in US$ 1373 million. Such replacement would allow a reduction of (GHG) emissions (greenhouse gases) nearly 8398Gg total CO2 avoided for Paraguay and 9420Gg total CO2 avoided for Bolivia, replacing (ICEV) internal combustion engine vehicle. However, the scenario envisioned to induce scale for local industrialization would rely on a conservative replacement of the 40 thousand vehicles per year in each country. The underlying idea is to gain scale locally for the initial production chain and then access the Latin American and world markets.

Suggested Citation

  • Sauer, Ildo L. & Escobar, Javier F. & da Silva, Mauro F.P. & Meza, Carlos G. & Centurion, Carlos & Goldemberg, José, 2015. "Bolivia and Paraguay: A beacon for sustainable electric mobility?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 910-925.
  • Handle: RePEc:eee:rensus:v:51:y:2015:i:c:p:910-925
    DOI: 10.1016/j.rser.2015.06.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115006103
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.06.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lutsey, Nicholas, 2012. "Regulatory and technology lead-time: The case of US automobile greenhouse gas emission standards," Transport Policy, Elsevier, vol. 21(C), pages 179-190.
    2. Arango, Santiago & Larsen, Erik R., 2010. "The environmental paradox in generation: How South America is gradually becoming more dependent on thermal generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2956-2965, December.
    3. Yaksic, Andrés & Tilton, John E., 2009. "Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium," Resources Policy, Elsevier, vol. 34(4), pages 185-194, December.
    4. Kumar, Lalit & Jain, Shailendra, 2014. "Electric propulsion system for electric vehicular technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 924-940.
    5. Vikström, Hanna & Davidsson, Simon & Höök, Mikael, 2013. "Lithium availability and future production outlooks," Applied Energy, Elsevier, vol. 110(C), pages 252-266.
    6. Mastropietro, Paolo & Batlle, Carlos & Barroso, Luiz A. & Rodilla, Pablo, 2014. "Electricity auctions in South America: Towards convergence of system adequacy and RES-E support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 375-385.
    7. Yu, C.F. & van Sark, W.G.J.H.M. & Alsema, E.A., 2011. "Unraveling the photovoltaic technology learning curve by incorporation of input price changes and scale effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 324-337, January.
    8. Rout, Ullash K. & Blesl, Markus & Fahl, Ulrich & Remme, Uwe & Voß, Alfred, 2009. "Uncertainty in the learning rates of energy technologies: An experiment in a global multi-regional energy system model," Energy Policy, Elsevier, vol. 37(11), pages 4927-4942, November.
    9. Høyer, Karl Georg, 2008. "The history of alternative fuels in transportation: The case of electric and hybrid cars," Utilities Policy, Elsevier, vol. 16(2), pages 63-71, June.
    10. Ren, Guizhou & Ma, Guoqing & Cong, Ning, 2015. "Review of electrical energy storage system for vehicular applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 225-236.
    11. Battke, Benedikt & Schmidt, Tobias S. & Grosspietsch, David & Hoffmann, Volker H., 2013. "A review and probabilistic model of lifecycle costs of stationary batteries in multiple applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 240-250.
    12. Richard Van Noorden, 2014. "The rechargeable revolution: A better battery," Nature, Nature, vol. 507(7490), pages 26-28, March.
    13. Rico, Julieta A. Puerto & Mercedes, Sonia S.P. & Sauer, Ildo L., 2010. "Genesis and consolidation of the Brazilian bioethanol: A review of policies and incentive mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1874-1887, September.
    14. Baddour, J. W., 1997. "The international petroleum industry : Competition, structural change and allocation of oil surplus," Energy Policy, Elsevier, vol. 25(2), pages 143-157, February.
    15. Agüero, J. & Rodríguez, F. & Giménez, A., 2013. "Energy management based on productiveness concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 92-100.
    16. García-Villalobos, J. & Zamora, I. & San Martín, J.I. & Asensio, F.J. & Aperribay, V., 2014. "Plug-in electric vehicles in electric distribution networks: A review of smart charging approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 717-731.
    17. Dimitri Carolyn & Effland Anne, 2007. "Fueling the Automobile: An Economic Exploration of Early Adoption of Gasoline over Ethanol," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 5(2), pages 1-21, December.
    18. Nikolaos Kouvaritakis & Antonio Soria & Stephane Isoard, 2000. "Modelling energy technology dynamics: methodology for adaptive expectations models with learning by doing and learning by searching," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 14(1/2/3/4), pages 104-115.
    19. Poullikkas, Andreas, 2015. "Sustainable options for electric vehicle technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1277-1287.
    20. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    21. Menegaki, Angeliki N. & Tsagarakis, Konstantinos P., 2015. "Rich enough to go renewable, but too early to leave fossil energy?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1465-1477.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blanco, G. & Amarilla, R. & Martinez, A. & Llamosas, C. & Oxilia, V., 2017. "Energy transitions and emerging economies: A multi-criteria analysis of policy options for hydropower surplus utilization in Paraguay," Energy Policy, Elsevier, vol. 108(C), pages 312-321.
    2. Janeth Carolina Godoy & Daniel Villamar & Rafael Soria & César Vaca & Thomas Hamacher & Freddy Ordóñez, 2021. "Preparing the Ecuador’s Power Sector to Enable a Large-Scale Electric Land Transport," Energies, MDPI, vol. 14(18), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoud, Moataz & Garnett, Ryan & Ferguson, Mark & Kanaroglou, Pavlos, 2016. "Electric buses: A review of alternative powertrains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 673-684.
    2. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    3. Mahmud, Khizir & Town, Graham E. & Morsalin, Sayidul & Hossain, M.J., 2018. "Integration of electric vehicles and management in the internet of energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4179-4203.
    4. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    5. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    6. Criqui, P. & Mima, S. & Menanteau, P. & Kitous, A., 2015. "Mitigation strategies and energy technology learning: An assessment with the POLES model," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 119-136.
    7. Hicham El Hadraoui & Mourad Zegrari & Fatima-Ezzahra Hammouch & Nasr Guennouni & Oussama Laayati & Ahmed Chebak, 2022. "Design of a Customizable Test Bench of an Electric Vehicle Powertrain for Learning Purposes Using Model-Based System Engineering," Sustainability, MDPI, vol. 14(17), pages 1-22, September.
    8. Fernando Moreno-Brieva & Carlos Merino, 2020. "African international trade in the global value chain of lithium batteries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(6), pages 1031-1052, August.
    9. Wu, Geng & Inderbitzin, Alessandro & Bening, Catharina, 2015. "Total cost of ownership of electric vehicles compared to conventional vehicles: A probabilistic analysis and projection across market segments," Energy Policy, Elsevier, vol. 80(C), pages 196-214.
    10. Gil-Alana, Luis A. & Monge, Manuel, 2019. "Lithium: Production and estimated consumption. Evidence of persistence," Resources Policy, Elsevier, vol. 60(C), pages 198-202.
    11. Yu Sang Chang & Dosoung Choi & Hann Earl Kim, 2017. "Dynamic Trends of Carbon Intensities among 127 Countries," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    12. Riba, Jordi-Roger & López-Torres, Carlos & Romeral, Luís & Garcia, Antoni, 2016. "Rare-earth-free propulsion motors for electric vehicles: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 367-379.
    13. Calvo, Guiomar & Valero, Alicia & Valero, Antonio, 2017. "Assessing maximum production peak and resource availability of non-fuel mineral resources: Analyzing the influence of extractable global resources," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 208-217.
    14. Papachristos, George, 2017. "Diversity in technology competition: The link between platforms and sociotechnical transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 291-306.
    15. Sverdrup, Harald Ulrik, 2016. "Modelling global extraction, supply, price and depletion of the extractable geological resources with the LITHIUM model," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 112-129.
    16. Hong, Sungjun & Chung, Yanghon & Woo, Chungwon, 2015. "Scenario analysis for estimating the learning rate of photovoltaic power generation based on learning curve theory in South Korea," Energy, Elsevier, vol. 79(C), pages 80-89.
    17. Mueller, Simon C. & Sandner, Philipp G. & Welpe, Isabell M., 2015. "Monitoring innovation in electrochemical energy storage technologies: A patent-based approach," Applied Energy, Elsevier, vol. 137(C), pages 537-544.
    18. Thomassen, Gwenny & Van Passel, Steven & Dewulf, Jo, 2020. "A review on learning effects in prospective technology assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    19. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    20. Chen, Feng & Taylor, Nathaniel & Kringos, Nicole, 2015. "Electrification of roads: Opportunities and challenges," Applied Energy, Elsevier, vol. 150(C), pages 109-119.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:51:y:2015:i:c:p:910-925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.