IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v50y2015icp176-185.html
   My bibliography  Save this article

Review on the externalities of hydropower: A comparison between large and small hydropower projects in Tibet based on the CO2 equivalent

Author

Listed:
  • Zhang, Jin
  • Xu, Linyu
  • Li, Xiaojin

Abstract

Both large hydropower projects (LHPs) and small hydropower projects (SHPs) have environmental and societal externalities, which have not been taken into account in their construction costs and operation benefits. These externalities are becoming an increasingly important issue in hydropower development policy making; as a result, it is essential to perform a systematic assessment of them among different hydropower patterns.

Suggested Citation

  • Zhang, Jin & Xu, Linyu & Li, Xiaojin, 2015. "Review on the externalities of hydropower: A comparison between large and small hydropower projects in Tibet based on the CO2 equivalent," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 176-185.
  • Handle: RePEc:eee:rensus:v:50:y:2015:i:c:p:176-185
    DOI: 10.1016/j.rser.2015.04.150
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115004207
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.04.150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dursun, Bahtiyar & Gokcol, Cihan, 2011. "The role of hydroelectric power and contribution of small hydropower plants for sustainable development in Turkey," Renewable Energy, Elsevier, vol. 36(4), pages 1227-1235.
    2. Kadigi, Reuben M.J. & Mdoe, Ntengua S.Y. & Ashimogo, Gasper C. & Morardet, Sylvie, 2008. "Water for irrigation or hydropower generation?--Complex questions regarding water allocation in Tanzania," Agricultural Water Management, Elsevier, vol. 95(8), pages 984-992, August.
    3. Kabir, Md Ruhul & Rooke, Braden & Dassanayake, G.D. Malinga & Fleck, Brian A., 2012. "Comparative life cycle energy, emission, and economic analysis of 100 kW nameplate wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 133-141.
    4. Gunawardena, U.A.D. Prasanthi, 2010. "Inequalities and externalities of power sector: A case of Broadlands hydropower project in Sri Lanka," Energy Policy, Elsevier, vol. 38(2), pages 726-734, February.
    5. Hondo, Hiroki, 2005. "Life cycle GHG emission analysis of power generation systems: Japanese case," Energy, Elsevier, vol. 30(11), pages 2042-2056.
    6. dos Santos, Marco Aurelio & Rosa, Luiz Pinguelli & Sikar, Bohdan & Sikar, Elizabeth & dos Santos, Ednaldo Oliveira, 2006. "Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants," Energy Policy, Elsevier, vol. 34(4), pages 481-488, March.
    7. Hennig, Thomas & Wang, Wenling & Feng, Yan & Ou, Xiaokun & He, Daming, 2013. "Review of Yunnan's hydropower development. Comparing small and large hydropower projects regarding their environmental implications and socio-economic consequences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 585-595.
    8. Palomino Cuya, Daly Grace & Brandimarte, Luigia & Popescu, Ioana & Alterach, Julio & Peviani, Maximo, 2013. "A GIS-based assessment of maximum potential hydropower production in La Plata basin under global changes," Renewable Energy, Elsevier, vol. 50(C), pages 103-114.
    9. Yunfeng, Yan & Laike, Yang, 2010. "China's foreign trade and climate change: A case study of CO2 emissions," Energy Policy, Elsevier, vol. 38(1), pages 350-356, January.
    10. de Almeida, Aníbal T. & Moura, Pedro S. & Marques, Alféu S. & de Almeida, José L., 2005. "Multi-impact evaluation of new medium and large hydropower plants in Portugal centre region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(2), pages 149-167, April.
    11. Kosnik, Lea, 2010. "The potential for small scale hydropower development in the US," Energy Policy, Elsevier, vol. 38(10), pages 5512-5519, October.
    12. Pascale, Andrew & Urmee, Tania & Moore, Andrew, 2011. "Life cycle assessment of a community hydroelectric power system in rural Thailand," Renewable Energy, Elsevier, vol. 36(11), pages 2799-2808.
    13. Wu, Yiping & Chen, Ji, 2013. "Estimating irrigation water demand using an improved method and optimizing reservoir operation for water supply and hydropower generation: A case study of the Xinfengjiang reservoir in southern China," Agricultural Water Management, Elsevier, vol. 116(C), pages 110-121.
    14. Tanwar, Nitin, 2007. "Clean development mechanism and off-grid small-scale hydropower projects: Evaluation of additionality," Energy Policy, Elsevier, vol. 35(1), pages 714-721, January.
    15. Abbasi, Tasneem & Abbasi, S.A., 2011. "Small hydro and the environmental implications of its extensive utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2134-2143, May.
    16. Varun, & Prakash, Ravi & Bhat, I.K., 2012. "Life cycle greenhouse gas emissions estimation for small hydropower schemes in India," Energy, Elsevier, vol. 44(1), pages 498-508.
    17. Huang, Hailun & Yan, Zheng, 2009. "Present situation and future prospect of hydropower in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1652-1656, August.
    18. Fang, Yiping & Wang, Mingjie & Deng, Wei & Xu, Keyan, 2010. "Exploitation scale of hydropower based on instream flow requirements: A case from southwest China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2290-2297, October.
    19. Fitzgerald, Niall & Lacal Arántegui, Roberto & McKeogh, Eamon & Leahy, Paul, 2012. "A GIS-based model to calculate the potential for transforming conventional hydropower schemes and non-hydro reservoirs to pumped hydropower schemes," Energy, Elsevier, vol. 41(1), pages 483-490.
    20. Kjaerland, Frode, 2007. "A real option analysis of investments in hydropower--The case of Norway," Energy Policy, Elsevier, vol. 35(11), pages 5901-5908, November.
    21. Tang, Jia & Fang, Jiang-ping & Li, Ping & Guo, Jian-bin & Lu, Jie & Yuan, Qing-juan, 2012. "The Function and Value of Water Conservation of Forest Ecosystem in Gongbo Nature Reserve of Tibet," Asian Agricultural Research, USA-China Science and Culture Media Corporation, vol. 4(01), pages 1-3, January.
    22. Okot, David Kilama, 2013. "Review of small hydropower technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 515-520.
    23. Mishra, Sachin & Singal, S.K. & Khatod, D.K., 2011. "Optimal installation of small hydropower plant—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3862-3869.
    24. Purohit, Pallav, 2008. "Small hydro power projects under clean development mechanism in India: A preliminary assessment," Energy Policy, Elsevier, vol. 36(6), pages 2000-2015, June.
    25. Jiang, Bing & Sun, Zhenqing & Liu, Meiqin, 2010. "China's energy development strategy under the low-carbon economy," Energy, Elsevier, vol. 35(11), pages 4257-4264.
    26. Demarty, M. & Bastien, J., 2011. "GHG emissions from hydroelectric reservoirs in tropical and equatorial regions: Review of 20 years of CH4 emission measurements," Energy Policy, Elsevier, vol. 39(7), pages 4197-4206, July.
    27. Aravena, Claudia & Hutchinson, W. George & Longo, Alberto, 2012. "Environmental pricing of externalities from different sources of electricity generation in Chile," Energy Economics, Elsevier, vol. 34(4), pages 1214-1225.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Zhe & Du, Hailong & Xiao, Yan & Guo, Jinsong, 2017. "Carbon footprints of two large hydro-projects in China: Life-cycle assessment according to ISO/TS 14067," Renewable Energy, Elsevier, vol. 114(PB), pages 534-546.
    2. Gemechu, Eskinder & Kumar, Amit, 2022. "A review of how life cycle assessment has been used to assess the environmental impacts of hydropower energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Benjamin T. Wood & Lindsay C. Stringer & Andrew J. Dougill & Claire H. Quinn, 2018. "Socially Just Triple-Wins? A Framework for Evaluating the Social Justice Implications of Climate Compatible Development," Sustainability, MDPI, vol. 10(1), pages 1-20, January.
    4. Du, Hailong & Yang, Liu & Wang, Wenzhong & Lu, Lunhui & Li, Zhe, 2022. "Emergy theory to quantify the sustainability of large cascade hydropower projects in the upper Yangtze," Ecological Modelling, Elsevier, vol. 468(C).
    5. Tahseen, Samiha & Karney, Bryan W., 2017. "Reviewing and critiquing published approaches to the sustainability assessment of hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 225-234.
    6. Michels-Brito, Adriane & Rodriguez, Daniel Andrés & Cruz Junior, Wellington Luís & Nildo de Souza Vianna, João, 2021. "The climate change potential effects on the run-of-river plant and the environmental and economic dimensions of sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    7. Zhang, Xiao & Li, Hong-Yi & Deng, Zhiqun Daniel & Ringler, Claudia & Gao, Yang & Hejazi, Mohamad I. & Leung, L. Ruby, 2018. "Impacts of climate change, policy and Water-Energy-Food nexus on hydropower development," Renewable Energy, Elsevier, vol. 116(PA), pages 827-834.
    8. Briones Hidrovo, Andrei & Uche, Javier & Martínez-Gracia, Amaya, 2017. "Accounting for GHG net reservoir emissions of hydropower in Ecuador," Renewable Energy, Elsevier, vol. 112(C), pages 209-221.
    9. Yu, Bing & Xu, Linyu, 2016. "Review of ecological compensation in hydropower development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 729-738.
    10. Patro, Epari Ritesh & De Michele, Carlo & Avanzi, Francesco, 2018. "Future perspectives of run-of-the-river hydropower and the impact of glaciers’ shrinkage: The case of Italian Alps," Applied Energy, Elsevier, vol. 231(C), pages 699-713.
    11. Huang, Yifan & Yang, Weijia & Liao, Yiwen & Zhao, Zhigao & Ma, Weichao & Yang, Jiebin & Yang, Jiandong, 2022. "Improved transfer function method for flexible simulation of hydraulic-mechanical-electrical transient processes of hydro-power plants," Renewable Energy, Elsevier, vol. 196(C), pages 390-404.
    12. Imelida Torrefranca & Roland Emerito Otadoy & Alejandro Tongco, 2022. "Incorporating Landscape Dynamics in Small-Scale Hydropower Site Location Using a GIS and Spatial Analysis Tool: The Case of Bohol, Central Philippines," Energies, MDPI, vol. 15(3), pages 1-31, February.
    13. Görtz, J. & Aouad, M. & Wieprecht, S. & Terheiden, K., 2022. "Assessment of pumped hydropower energy storage potential along rivers and shorelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    14. Rogeau, A. & Girard, R. & Kariniotakis, G., 2017. "A generic GIS-based method for small Pumped Hydro Energy Storage (PHES) potential evaluation at large scale," Applied Energy, Elsevier, vol. 197(C), pages 241-253.
    15. Song, Cuihong & Gardner, Kevin H. & Klein, Sharon J.W. & Souza, Simone Pereira & Mo, Weiwei, 2018. "Cradle-to-grave greenhouse gas emissions from dams in the United States of America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 945-956.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jin & Xu, Linyu & Yu, Bing & Li, Xiaojin, 2014. "Environmentally feasible potential for hydropower development regarding environmental constraints," Energy Policy, Elsevier, vol. 73(C), pages 552-562.
    2. Song, Cuihong & Gardner, Kevin H. & Klein, Sharon J.W. & Souza, Simone Pereira & Mo, Weiwei, 2018. "Cradle-to-grave greenhouse gas emissions from dams in the United States of America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 945-956.
    3. Gemechu, Eskinder & Kumar, Amit, 2022. "A review of how life cycle assessment has been used to assess the environmental impacts of hydropower energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Cheng, Chuntian & Liu, Benxi & Chau, Kwok-Wing & Li, Gang & Liao, Shengli, 2015. "China׳s small hydropower and its dispatching management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 43-55.
    5. Zhang, Jing & Luo, Chuan-Yan & Curtis, Zachary & Deng, Shi-huai & Wu, Yang & Li, Yuan-wei, 2015. "Carbon dioxide emission accounting for small hydropower plants—A case study in southwest China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 755-761.
    6. Xu, Jiuping & Ni, Ting, 2017. "Integrated technological paradigm-based soft paths towards sustainable development of small hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 623-634.
    7. Kelly-Richards, Sarah & Silber-Coats, Noah & Crootof, Arica & Tecklin, David & Bauer, Carl, 2017. "Governing the transition to renewable energy: A review of impacts and policy issues in the small hydropower boom," Energy Policy, Elsevier, vol. 101(C), pages 251-264.
    8. Kumar, Deepak & Katoch, S.S., 2015. "Sustainability suspense of small hydropower projects: A study from western Himalayan region of India," Renewable Energy, Elsevier, vol. 76(C), pages 220-233.
    9. Ptak, Thomas & Crootof, Arica & Harlan, Tyler & Kelly, Sarah, 2022. "Critically evaluating the purported global “boom” in small hydropower development through spatial and temporal analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    10. Briones Hidrovo, Andrei & Uche, Javier & Martínez-Gracia, Amaya, 2017. "Accounting for GHG net reservoir emissions of hydropower in Ecuador," Renewable Energy, Elsevier, vol. 112(C), pages 209-221.
    11. Kumar, Deepak & Katoch, S.S., 2014. "Harnessing ‘water tower’ into ‘power tower’: A small hydropower development study from an Indian prefecture in western Himalayas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 87-101.
    12. Feng, Kuishuang & Hubacek, Klaus & Siu, Yim Ling & Li, Xin, 2014. "The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 342-355.
    13. Klein, S.J.W. & Fox, E.L.B., 2022. "A review of small hydropower performance and cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    14. Ferreira, Jacson Hudson Inácio & Camacho, José Roberto & Malagoli, Juliana Almansa & Júnior, Sebastião Camargo Guimarães, 2016. "Assessment of the potential of small hydropower development in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 380-387.
    15. Akhil Kadiyala & Raghava Kommalapati & Ziaul Huque, 2016. "Evaluation of the Life Cycle Greenhouse Gas Emissions from Hydroelectricity Generation Systems," Sustainability, MDPI, vol. 8(6), pages 1-14, June.
    16. Mishra, Sachin & Singal, S.K. & Khatod, D.K., 2011. "Optimal installation of small hydropower plant—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3862-3869.
    17. Sharma, Naveen Kumar & Tiwari, Prashant Kumar & Sood, Yog Raj, 2013. "A comprehensive analysis of strategies, policies and development of hydropower in India: Special emphasis on small hydro power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 460-470.
    18. Höffken, Johanna I., 2014. "A closer look at small hydropower projects in India: Social acceptability of two storage-based projects in Karnataka," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 155-166.
    19. Zhang, Lixiao & Pang, Mingyue & Bahaj, AbuBakr S. & Yang, Yongchuan & Wang, Changbo, 2021. "Small hydropower development in China: Growing challenges and transition strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Marianna Rotilio & Chiara Marchionni & Pierluigi De Berardinis, 2017. "The Small-Scale Hydropower Plants in Sites of Environmental Value: An Italian Case Study," Sustainability, MDPI, vol. 9(12), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:50:y:2015:i:c:p:176-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.