IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v188y2023ics1364032123006688.html
   My bibliography  Save this article

A critical review of Madhuca indica as an efficient biodiesel producer: Towards sustainability

Author

Listed:
  • Sudalai, S
  • Rupesh, K J
  • Devanesan, M.G
  • Arumugam, A

Abstract

The global rise in demand for crude oil and its derivatives has stemmed from population growth and rapid industrialization. To address the environmental and energy issues, most countries are attempting to utilize biodiesel as a replacement for mineral diesel. Vegetable oils, yellow grease, animal fats, and leftover cooking oils are used to produce biodiesel. Its non-toxic characteristics, higher biodegradability, heating value, and minimal pollutant emission are just some of its benefits. The biodiesel production from tree-based oil (TBO) has incorporated several advantages over the other sources. The afforestation potentials, community livelihood development, and lessened dependency on foreign resources and their emissions are the known direct benefits. Mahua (Madhuca indica), a member of the Sapotaceae family, is native to India and other Asian countries have the potential to achieve several goals of sustainable development with its multiple products. This study provides a single junction to learn about the Mahua. The Scientometric analysis revealed that the Mahua is an attractive source for biodiesel production. The review focuses on illuminating the various processes for bio-oil extraction from mahua seed, the production of biodiesel from Mahua bio-oil with various catalysts, and the properties of biodiesel with emission analysis and engine performance. The possible value addition for the by-products of biodiesel production as well as the various products of mahua was also included. The economic analysis and the potential of achieving multiple Sustainable Development Goals (SDGs) like 1,2,3,5,7,8,9,11,12,13,15 were also detailed to substantiate the capacity of mahua as a reliable energy and sustainable source.

Suggested Citation

  • Sudalai, S & Rupesh, K J & Devanesan, M.G & Arumugam, A, 2023. "A critical review of Madhuca indica as an efficient biodiesel producer: Towards sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:rensus:v:188:y:2023:i:c:s1364032123006688
    DOI: 10.1016/j.rser.2023.113811
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123006688
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113811?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Himansh & Sarma, A.K. & Kumar, Pramod, 2020. "A comprehensive review on preparation, characterization, and combustion characteristics of microemulsion based hybrid biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    2. Chen, Jiaxin & Li, Ji & Dong, Wenyi & Zhang, Xiaolei & Tyagi, Rajeshwar D. & Drogui, Patrick & Surampalli, Rao Y., 2018. "The potential of microalgae in biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 336-346.
    3. Dutra, Luciana da Silva & Costa Cerqueira Pinto, Martina & Cipolatti, Eliane Pereira & Aguieiras, Erika Cristina G. & Manoel, Evelin Andrade & Greco-Duarte, Jaqueline & Guimarães Freire, Denise Maria , 2022. "How the biodiesel from immobilized enzymes production is going on: An advanced bibliometric evaluation of global research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Prakash, R. & Singh, R.K. & Murugan, S., 2013. "Experimental investigation on a diesel engine fueled with bio-oil derived from waste wood–biodiesel emulsions," Energy, Elsevier, vol. 55(C), pages 610-618.
    5. Mohammad I. Jahirul & Mohammad G. Rasul & Ashfaque Ahmed Chowdhury & Nanjappa Ashwath, 2012. "Biofuels Production through Biomass Pyrolysis —A Technological Review," Energies, MDPI, vol. 5(12), pages 1-50, November.
    6. Andreo-Martínez, Pedro & Ortiz-Martínez, Víctor Manuel & García-Martínez, Nuria & de los Ríos, Antonia Pérez & Hernández-Fernández, Francisco José & Quesada-Medina, Joaquín, 2020. "Production of biodiesel under supercritical conditions: State of the art and bibliometric analysis," Applied Energy, Elsevier, vol. 264(C).
    7. Ambat, Indu & Srivastava, Varsha & Sillanpää, Mika, 2018. "Recent advancement in biodiesel production methodologies using various feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 356-369.
    8. Arumugam, A. & Ponnusami, V., 2019. "Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: An overview," Renewable Energy, Elsevier, vol. 131(C), pages 459-471.
    9. Puhan, Sukumar & Vedaraman, N. & Sankaranarayanan, G. & Ram, Boppana V. Bharat, 2005. "Performance and emission study of Mahua oil (madhuca indica oil) ethyl ester in a 4-stroke natural aspirated direct injection diesel engine," Renewable Energy, Elsevier, vol. 30(8), pages 1269-1278.
    10. Atabani, A.E. & Silitonga, A.S. & Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Fayaz, H., 2013. "Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 211-245.
    11. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    12. Sharma, Y.C. & Singh, B., 2009. "Development of biodiesel: Current scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1646-1651, August.
    13. Glisic, Sandra B. & Pajnik, Jelena M. & Orlović, Aleksandar M., 2016. "Process and techno-economic analysis of green diesel production from waste vegetable oil and the comparison with ester type biodiesel production," Applied Energy, Elsevier, vol. 170(C), pages 176-185.
    14. Hossain, A.K. & Davies, P.A., 2013. "Pyrolysis liquids and gases as alternative fuels in internal combustion engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 165-189.
    15. Leng, Lijian & Li, Hui & Yuan, Xingzhong & Zhou, Wenguang & Huang, Huajun, 2018. "Bio-oil upgrading by emulsification/microemulsification: A review," Energy, Elsevier, vol. 161(C), pages 214-232.
    16. Ganesan, Shangeetha & Nadarajah, Sivajothi & Chee, Xin Yeng & Khairuddean, Melati & Teh, Geok Bee, 2020. "Esterification of free fatty acids using ammonium ferric sulphate-calcium silicate as a heterogeneous catalyst," Renewable Energy, Elsevier, vol. 153(C), pages 1406-1417.
    17. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    18. Rajaeifar, Mohammad Ali & Akram, Asadolah & Ghobadian, Barat & Rafiee, Shahin & Heijungs, Reinout & Tabatabaei, Meisam, 2016. "Environmental impact assessment of olive pomace oil biodiesel production and consumption: A comparative lifecycle assessment," Energy, Elsevier, vol. 106(C), pages 87-102.
    19. Tirkey, Jeewan Vachan & Kumar, Ajeet & Singh, Deepak Kumar, 2022. "Energy consumption, greenhouse gas emissions and economic feasibility studies of biodiesel production from Mahua (Madhuca longifolia) in India," Energy, Elsevier, vol. 249(C).
    20. Murugan, S. & Gu, Sai, 2015. "Research and development activities in pyrolysis – Contributions from Indian scientific community – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 282-295.
    21. Gogoi, T.K. & Baruah, D.C., 2011. "The use of Koroch seed oil methyl ester blends as fuel in a diesel engine," Applied Energy, Elsevier, vol. 88(8), pages 2713-2725, August.
    22. Sandouqa, Arwa & Al-Hamamre, Zayed, 2021. "Economical evaluation of jojoba cultivation for biodiesel production in Jordan," Renewable Energy, Elsevier, vol. 177(C), pages 1116-1132.
    23. Singh, S.P. & Singh, Dipti, 2010. "Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 200-216, January.
    24. Peters, Jens F. & Petrakopoulou, Fontina & Dufour, Javier, 2015. "Exergy analysis of synthetic biofuel production via fast pyrolysis and hydroupgrading," Energy, Elsevier, vol. 79(C), pages 325-336.
    25. Nayak, Sheetal N. & Bhasin, Chandra Prakash & Nayak, Milap G., 2019. "A review on microwave-assisted transesterification processes using various catalytic and non-catalytic systems," Renewable Energy, Elsevier, vol. 143(C), pages 1366-1387.
    26. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    27. Barnwal, B.K. & Sharma, M.P., 2005. "Prospects of biodiesel production from vegetable oils in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(4), pages 363-378, August.
    28. Rajasekar, E. & Selvi, S., 2014. "Review of combustion characteristics of CI engines fueled with biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 390-399.
    29. Mateus Torres Nazari & Janaína Mazutti & Luana Girardi Basso & Luciane Maria Colla & Luciana Brandli, 2021. "Biofuels and their connections with the sustainable development goals: a bibliometric and systematic review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11139-11156, August.
    30. Bendu, Harisankar & Murugan, S., 2014. "Homogeneous charge compression ignition (HCCI) combustion: Mixture preparation and control strategies in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 732-746.
    31. Živković, Snežana B. & Veljković, Milan V. & Banković-Ilić, Ivana B. & Krstić, Ivan M. & Konstantinović, Sandra S. & Ilić, Slavica B. & Avramović, Jelena M. & Stamenković, Olivera S. & Veljković, Vlad, 2017. "Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 222-247.
    32. Nasir, N.F. & Daud, W.R.W. & Kamarudin, S.K. & Yaakob, Z., 2013. "Process system engineering in biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 631-639.
    33. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    34. Gupta, Aditi & Kumar, Ashwani & Sharma, Satyawati & Vijay, V.K., 2013. "Comparative evaluation of raw and detoxified mahua seed cake for biogas production," Applied Energy, Elsevier, vol. 102(C), pages 1514-1521.
    35. Öner, Cengiz & Altun, Sehmus, 2009. "Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine," Applied Energy, Elsevier, vol. 86(10), pages 2114-2120, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pradhan, Debalaxmi & Bendu, Harisankar & Singh, R.K. & Murugan, S., 2017. "Mahua seed pyrolysis oil blends as an alternative fuel for light-duty diesel engines," Energy, Elsevier, vol. 118(C), pages 600-612.
    2. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    3. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    4. Đurišić-Mladenović, Nataša & Kiss, Ferenc & Škrbić, Biljana & Tomić, Milan & Mićić, Radoslav & Predojević, Zlatica, 2018. "Current state of the biodiesel production and the indigenous feedstock potential in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 280-291.
    5. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    6. Habibullah, M. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Mofijur, M. & Mobarak, H.M. & Ashraful, A.M., 2015. "Potential of biodiesel as a renewable energy source in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 819-834.
    7. Yesilyurt, Murat Kadir & Cesur, Cüneyt & Aslan, Volkan & Yilbasi, Zeki, 2020. "The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. A. K. Azad, 2017. "Biodiesel from Mandarin Seed Oil: A Surprising Source of Alternative Fuel," Energies, MDPI, vol. 10(11), pages 1-22, October.
    9. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Hazrat, M.A., 2015. "Prospect of biofuels as an alternative transport fuel in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 331-351.
    10. Chakraborty, Rajat & Gupta, Abhishek.K. & Chowdhury, Ratul, 2014. "Conversion of slaughterhouse and poultry farm animal fats and wastes to biodiesel: Parametric sensitivity and fuel quality assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 120-134.
    11. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    12. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    13. Singh, Paramvir & Varun, & Chauhan, S.R. & Kumar, Niraj, 2016. "A review on methodology for complete elimination of diesel from CI engines using mixed feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1110-1125.
    14. Borugadda, Venu Babu & Goud, Vaibhav V., 2012. "Biodiesel production from renewable feedstocks: Status and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4763-4784.
    15. Mukhtar, Ahmad & Saqib, Sidra & Lin, Hongfei & Hassan Shah, Mansoor Ul & Ullah, Sami & Younas, Muhammad & Rezakazemi, Mashallah & Ibrahim, Muhammad & Mahmood, Abid & Asif, Saira & Bokhari, Awais, 2022. "Current status and challenges in the heterogeneous catalysis for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    16. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    17. Takase, Mohammed & Zhao, Ting & Zhang, Min & Chen, Yao & Liu, Hongyang & Yang, Liuqing & Wu, Xiangyang, 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 495-520.
    18. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E. & Shahabuddin, M. & Palash, S.M. & Hazrat, M.A., 2013. "Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 441-455.
    19. Singh, Paramvir & Varun, & Chauhan, S.R., 2016. "Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 269-291.
    20. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:188:y:2023:i:c:s1364032123006688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.