IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v173y2023ics1364032122009625.html
   My bibliography  Save this article

Utilization of early retiring coal-fired power plants as a cold reserve in South Korea: A public perspective

Author

Listed:
  • Park, Seong-Ju
  • Kim, Ju-Hee
  • Yoo, Seung-Hoon

Abstract

With an intention to reduce greenhouse gas emissions, the South Korean government decided to retire thirty coal-fired power plants early by 2034. Rather than dismantling all of them, some of them are proposed to be used as cold reserves. This paper seeks to explore the public preference and cost bearing for utilization of early retiring coal-fired power plants as a cold reserve by adopting a contingent valuation. To this end, the public willingness to pay (WTP) for the utilization was elicited through a survey of 1000 South Korean households. The payment vehicle was set to be an increase in monthly electricity bill. The method of inducing the WTP was determined as one-and-one-half-bounded questioning. The spike model was selected to reflect the WTP observations with zeros. The average monthly household WTP was estimated as KRW 1596 (USD 1.32), which was worth 3.6% of the average monthly electricity bill (KRW 43,950 or USD 36.32) per household. If the average WTP is re-calculated for all households in the country, it will reach KRW 263.52 billion (USD 217.80 million) a year. Therefore, the utilization can be introduced to the extent that this level of cost is incurred. Several issues that need to be solved in order for the utilization to succeed are also discussed.

Suggested Citation

  • Park, Seong-Ju & Kim, Ju-Hee & Yoo, Seung-Hoon, 2023. "Utilization of early retiring coal-fired power plants as a cold reserve in South Korea: A public perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
  • Handle: RePEc:eee:rensus:v:173:y:2023:i:c:s1364032122009625
    DOI: 10.1016/j.rser.2022.113081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122009625
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.113081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hyung-Seok Jeong & Ju-Hee Kim & Seung-Hoon Yoo, 2021. "South Korean Public Acceptance of the Fuel Transition from Coal to Natural Gas in Power Generation," Sustainability, MDPI, vol. 13(19), pages 1-17, September.
    2. Ian J. Bateman & Brett H. Day & Diane P. Dupont & Stavros Georgiou, 2009. "Procedural Invariance Testing of the One-and-One-Half-Bound Dichotomous Choice Elicitation Method," The Review of Economics and Statistics, MIT Press, vol. 91(4), pages 806-820, November.
    3. Jang, Jinyong & Lee, Jongsu & Yoo, Seung-Hoon, 2014. "The public׳s willingness to pay for securing a reliable natural gas supply in Korea," Energy Policy, Elsevier, vol. 69(C), pages 3-13.
    4. Ghosh, Ranjan & Goyal, Yugank & Rommel, Jens & Sagebiel, Julian, 2017. "Are small firms willing to pay for improved power supply? Evidence from a contingent valuation study in India," Energy Policy, Elsevier, vol. 109(C), pages 659-665.
    5. Paravantis, John A. & Stigka, Eleni & Mihalakakou, Giouli & Michalena, Evanthie & Hills, Jeremy M. & Dourmas, Vasilis, 2018. "Social acceptance of renewable energy projects: A contingent valuation investigation in Western Greece," Renewable Energy, Elsevier, vol. 123(C), pages 639-651.
    6. Sharpton, Tara & Lawrence, Thomas & Hall, Margeret, 2020. "Drivers and barriers to public acceptance of future energy sources and grid expansion in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    7. W. Michael Hanemann, 1984. "Welfare Evaluations in Contingent Valuation Experiments with Discrete Responses," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(3), pages 332-341.
    8. Ozbafli, Aygul & Jenkins, Glenn P., 2016. "Estimating the willingness to pay for reliable electricity supply: A choice experiment study," Energy Economics, Elsevier, vol. 56(C), pages 443-452.
    9. JongRoul Woo & HyungBin Moon & Jongsu Lee & Jinyong Jang, 2017. "Public attitudes toward the construction of new power plants in South Korea," Energy & Environment, , vol. 28(4), pages 499-517, June.
    10. Cheng, Y.S. & Cao, K.H. & Woo, C.K. & Yatchew, A., 2017. "Residential willingness to pay for deep decarbonization of electricity supply: Contingent valuation evidence from Hong Kong," Energy Policy, Elsevier, vol. 109(C), pages 218-227.
    11. Mo, Jianlei & Cui, Lianbiao & Duan, Hongbo, 2021. "Quantifying the implied risk for newly-built coal plant to become stranded asset by carbon pricing," Energy Economics, Elsevier, vol. 99(C).
    12. Haggerty, Julia H. & Haggerty, Mark N. & Roemer, Kelli & Rose, Jackson, 2018. "Planning for the local impacts of coal facility closure: Emerging strategies in the U.S. West," Resources Policy, Elsevier, vol. 57(C), pages 69-80.
    13. Clark, Richard & Zucker, Noah & Urpelainen, Johannes, 2020. "The future of coal-fired power generation in Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    14. Brad R. Humphreys & Bruce K. Johnson & John C. Whitehead, 2020. "Validity and reliability of contingent valuation and life satisfaction measures of welfare: An application to the value of national Olympic success," Southern Economic Journal, John Wiley & Sons, vol. 87(1), pages 316-330, July.
    15. Seung-Hoon Yoo & Seung-Jun Kwak, 2002. "Using a spike model to deal with zero response data from double bounded dichotomous choice contingent valuation surveys," Applied Economics Letters, Taylor & Francis Journals, vol. 9(14), pages 929-932.
    16. Lee, Chul-Yong & Lee, Min-Kyu & Yoo, Seung-Hoon, 2017. "Willingness to pay for replacing traditional energies with renewable energy in South Korea," Energy, Elsevier, vol. 128(C), pages 284-290.
    17. Jones, Benjamin A. & Ripberger, Joseph & Jenkins-Smith, Hank & Silva, Carol, 2017. "Estimating willingness to pay for greenhouse gas emission reductions provided by hydropower using the contingent valuation method," Energy Policy, Elsevier, vol. 111(C), pages 362-370.
    18. Gagarin, H. & Sridhar, S. & Lange, I. & Bazilian, M.D., 2020. "Considering non-power generation uses of coal in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    19. Joseph C. Cooper & Michael Hanemann & Giovanni Signorello, 2002. "One-and-One-Half-Bound Dichotomous Choice Contingent Valuation," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 742-750, November.
    20. Richard T. Carson, 2012. "Contingent Valuation: A Practical Alternative When Prices Aren't Available," Journal of Economic Perspectives, American Economic Association, vol. 26(4), pages 27-42, Fall.
    21. Hansen, T.A., 2022. "Stranded assets and reduced profits: Analyzing the economic underpinnings of the fossil fuel industry's resistance to climate stabilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    22. Robert J. Johnston & Kevin J. Boyle & Wiktor (Vic) Adamowicz & Jeff Bennett & Roy Brouwer & Trudy Ann Cameron & W. Michael Hanemann & Nick Hanley & Mandy Ryan & Riccardo Scarpa & Roger Tourangeau & Ch, 2017. "Contemporary Guidance for Stated Preference Studies," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(2), pages 319-405.
    23. Amoah, Anthony & Ferrini, Silvia & Schaafsma, Marije, 2019. "Electricity outages in Ghana: Are contingent valuation estimates valid?," Energy Policy, Elsevier, vol. 135(C).
    24. Maamoun, Nada & Kennedy, Ryan & Jin, Xiaomeng & Urpelainen, Johannes, 2020. "Identifying coal-fired power plants for early retirement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    25. Stella Nalukwago Settumba & Marian Shanahan & Willings Botha & Muhammad Zulilhaam Ramli & Georgina Mary Chambers, 2019. "Reliability and Validity of the Contingent Valuation Method for Estimating Willingness to Pay: A Case of In Vitro Fertilisation," Applied Health Economics and Health Policy, Springer, vol. 17(1), pages 103-110, February.
    26. Krinsky, Itzhak & Robb, A Leslie, 1986. "On Approximating the Statistical Properties of Elasticities," The Review of Economics and Statistics, MIT Press, vol. 68(4), pages 715-719, November.
    27. Zhang, Weirong & Ren, Mengjia & Kang, Junjie & Zhou, Yiou & Yuan, Jiahai, 2022. "Estimating stranded coal assets in China's power sector," Utilities Policy, Elsevier, vol. 75(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Ju-Hee & Lim, Seul-Ye & Yoo, Seung-Hoon, 2021. "Public preferences for introducing a power-to-heat system in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Ju-Hee Kim & Seul-Ye Lim & Seung-Hoon Yoo, 2022. "A Price Premium for the District Heating System: An Empirical Investigation on South Korean Residents," Sustainability, MDPI, vol. 14(12), pages 1-10, June.
    3. Lee, Kyung-Sook & Kim, Ju-Hee & Yoo, Seung-Hoon, 2021. "Would people pay a price premium for electricity from domestic wind power facilities? The case of South Korea," Energy Policy, Elsevier, vol. 156(C).
    4. Koo, A Mi & Kim, Ju-Hee & Yoo, Seung-Hoon, 2022. "Household willingness to pay for a smart water metering and monitoring system: The case of South Korea," Utilities Policy, Elsevier, vol. 79(C).
    5. Kim, Hyo-Jin & Lee, Hye-Jeong & Yoo, Seung-Hoon, 2018. "Are South Korean people willing to pay for official development assistance for building renewable power plants in developing countries?," Energy Policy, Elsevier, vol. 118(C), pages 626-632.
    6. Song, Tae-Ho & Lim, Kyoung-Min & Yoo, Seung-Hoon, 2015. "Estimating the public’s value of implementing the CO2 emissions trading scheme in Korea," Energy Policy, Elsevier, vol. 83(C), pages 82-86.
    7. Kim, Ju-Hee & Yoo, Seung-Hoon, 2020. "South Koreans’ perspective on assisting the power supply to North Korea: Evidence from a contingent valuation," Energy Policy, Elsevier, vol. 139(C).
    8. Kim, Hyo-Jin & Lim, Seul-Ye & Yoo, Seung-Hoon, 2017. "The Korean public's willingness to pay for expanding the use of solid refuse fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 821-827.
    9. Min-Kyu Lee & Ju-Hee Kim & Seung-Hoon Yoo, 2018. "Public Willingness to Pay for Increasing Photovoltaic Power Generation: The Case of Korea," Sustainability, MDPI, vol. 10(4), pages 1-11, April.
    10. Lim, Seul-Ye & Kim, Hyo-Jin & Yoo, Seung-Hoon, 2018. "Household willingness to pay for expanding fuel cell power generation in Korea: A view from CO2 emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 242-249.
    11. Seul-Ye Lim & Seung-Hoon Yoo, 2019. "Will South Korean Residential Consumers Accept the Renewable Heat Incentive Scheme? A Stated Preference Approach," Energies, MDPI, vol. 12(10), pages 1-9, May.
    12. Hyung-Seok Jeong & Ju-Hee Kim & Seung-Hoon Yoo, 2021. "South Korean Public Acceptance of the Fuel Transition from Coal to Natural Gas in Power Generation," Sustainability, MDPI, vol. 13(19), pages 1-17, September.
    13. Kim, Ju-Hee & Han, Su-Mi & Yoo, Seung-Hoon, 2023. "Price premium for green hydrogen in South Korea: Evidence from a stated preference study," Renewable Energy, Elsevier, vol. 211(C), pages 647-655.
    14. Kwak, So-Yoon & Yoo, Seung-Hoon, 2015. "The public’s value for developing ocean energy technology in the Republic of Korea: A contingent valuation study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 432-439.
    15. Lee, Gunwoo & Kim, Soo-Yeob & Lee, Min-Kyu, 2015. "Economic evaluation of vessel traffic service (VTS): A contingent valuation study," Marine Policy, Elsevier, vol. 61(C), pages 149-154.
    16. Lim, Seul-Ye & Kim, Hyo-Jin & Yoo, Seung-Hoon, 2017. "Public's willingness to pay a premium for bioethanol in Korea: A contingent valuation study," Energy Policy, Elsevier, vol. 101(C), pages 20-27.
    17. Ju-Hee Kim & Ga-Eun Kim & Seung-Hoon Yoo, 2018. "A Valuation of the Restoration of Hwangnyongsa Temple in South Korea," Sustainability, MDPI, vol. 10(2), pages 1-7, January.
    18. Amoah, Anthony & Ferrini, Silvia & Schaafsma, Marije, 2019. "Electricity outages in Ghana: Are contingent valuation estimates valid?," Energy Policy, Elsevier, vol. 135(C).
    19. Lee, Min-Kyu & Nam, Jungho & Kim, Miju, 2023. "Valuing the public preference for offshore wind energy: The case study in South Korea," Energy, Elsevier, vol. 263(PB).
    20. Lim, Hea-Jin & Yoo, Seung-Hoon, 2014. "Train travel passengers' willingness to pay to offset their CO2 emissions in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 526-531.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:173:y:2023:i:c:s1364032122009625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.