IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i7p4470-4478.html
   My bibliography  Save this article

Wind power utilization for water pumping using small wind turbines in Saudi Arabia: A techno-economical review

Author

Listed:
  • Rehman, Shafiqur
  • Sahin, Ahmet Z.

Abstract

An attempt has been made, may be first time in Saudi Arabia, to utilize power of the wind for pumping the water for remotely located inhabitants not connected with national power grid. Small turbines of 1–10kW have been chosen in conjunction with Goulds 45J model water pumps to produce energy from wind and pump water using the produced energy at Arar, Rawdat Ben Habbas and Juaymah localities in Saudi Arabia. Wind speed measurements made at different heights using 40m tall towers have been utilized in the present work. Higher wind speeds were noticed during summer time compared to winter time at all the locations. Both energy yield and cost of energy point of view, 2.5kW wind turbine from Proven was found to be most suitable for wind power generation at all sites. It is shown that annual total water pumping capacity of 30,000m3 is possible from a depth of total dynamic head of 50m when using 2.5kW Proven wind turbine with hub heights 15–40m at all three sites with cost of water pumping as low as 1.28US¢/m3.

Suggested Citation

  • Rehman, Shafiqur & Sahin, Ahmet Z., 2012. "Wind power utilization for water pumping using small wind turbines in Saudi Arabia: A techno-economical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4470-4478.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:7:p:4470-4478
    DOI: 10.1016/j.rser.2012.04.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112003115
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.04.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohsen, Mousa S. & Akash, Bilal A., 1998. "Potentials of wind energy development for water pumping in Jordan," Renewable Energy, Elsevier, vol. 14(1), pages 441-446.
    2. Rehman, Shafiqur & Ahmad, Aftab & Al-Hadhrami, Luai M., 2011. "Development and economic assessment of a grid connected 20Â MW installed capacity wind farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 833-838, January.
    3. Bouzidi, B., 2011. "Viability of solar or wind for water pumping systems in the Algerian Sahara regions – case study Adrar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4436-4442.
    4. Harries, Mike, 2002. "Disseminating wind pumps in rural Kenya--meeting rural water needs using locally manufactured wind pumps," Energy Policy, Elsevier, vol. 30(11-12), pages 1087-1094, September.
    5. Mohandes, M. & Rehman, S. & Rahman, S.M., 2011. "Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS)," Applied Energy, Elsevier, vol. 88(11), pages 4024-4032.
    6. Rehman, S. & El-Amin, I.M. & Ahmad, F. & Shaahid, S.M. & Al-Shehri, A.M. & Bakhashwain, J.M., 2007. "Wind power resource assessment for Rafha, Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 937-950, June.
    7. Hammad, M, 1995. "Photovoltaic, wind and diesel : A cost comparative study of water pumping options in Jordan," Energy Policy, Elsevier, vol. 23(8), pages 723-726, August.
    8. Al Suleimani, Zaher & Rao, N. R., 2000. "Wind-powered electric water-pumping system installed in a remote location," Applied Energy, Elsevier, vol. 65(1-4), pages 339-347, April.
    9. Smulders, Paul T. & de Jongh, Jan, 1994. "Wind water pumping: Status, prospects and barriers," Renewable Energy, Elsevier, vol. 5(1), pages 587-594.
    10. Bowen, A.J & Zakay, N & Ives, R.L, 2003. "The field performance of a remote 10 kW wind turbine," Renewable Energy, Elsevier, vol. 28(1), pages 13-33.
    11. Fraenkel, P.L. & Crick, F.J. & Cowley, P.D., 1999. "Wind power for pumping: The development of the ITP windpump," Renewable Energy, Elsevier, vol. 16(1), pages 916-921.
    12. Rehman, Shafiqur & Mahbub Alam, Md. & Meyer, J.P. & Al-Hadhrami, Luai M., 2012. "Feasibility study of a wind–pv–diesel hybrid power system for a village," Renewable Energy, Elsevier, vol. 38(1), pages 258-268.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2022. "Experimental investigation of a novel hybrid drying system powered by a solar photovoltaic/thermal air collector and wind turbine," Renewable Energy, Elsevier, vol. 194(C), pages 705-718.
    2. Aliyu, Mansur & Hassan, Ghassan & Said, Syed A. & Siddiqui, Muhammad U. & Alawami, Ali T. & Elamin, Ibrahim M., 2018. "A review of solar-powered water pumping systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 61-76.
    3. Zi, Dan & Wang, Fujun & Wang, Chaoyue & Huang, Congbin & Shen, Lian, 2021. "Investigation on the air-core vortex in a vertical hydraulic intake system," Renewable Energy, Elsevier, vol. 177(C), pages 1333-1345.
    4. Elshurafa, Amro M. & Alatawi, Hatem & Hasanov, Fakhri J. & Algahtani, Goblan J. & Felder, Frank A., 2022. "Cost, emission, and macroeconomic implications of diesel displacement in the Saudi agricultural sector: Options and policy insights," Energy Policy, Elsevier, vol. 168(C).
    5. Sridhar, Surya & Zuber, Mohammad & B., Satish Shenoy & Kumar, Amit & Ng, Eddie Y.K. & Radhakrishnan, Jayakrishnan, 2022. "Aerodynamic comparison of slotted and non-slotted diffuser casings for Diffuser Augmented Wind Turbines (DAWT)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Ramli, Makbul A.M. & Bouchekara, H.R.E.H. & Alghamdi, Abdulsalam S., 2018. "Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm," Renewable Energy, Elsevier, vol. 121(C), pages 400-411.
    7. Gopal, C. & Mohanraj, M. & Chandramohan, P. & Chandrasekar, P., 2013. "Renewable energy source water pumping systems—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 351-370.
    8. Ramli, Makbul A.M. & Twaha, Ssennoga & Al-Hamouz, Zakariya, 2017. "Analyzing the potential and progress of distributed generation applications in Saudi Arabia: The case of solar and wind resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 287-297.
    9. Mostafaeipour, Ali & Jadidi, Mohsen & Mohammadi, Kasra & Sedaghat, Ahmad, 2014. "An analysis of wind energy potential and economic evaluation in Zahedan, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 641-650.
    10. Mohammadzadeh Bina, Saeid & Jalilinasrabady, Saeid & Fujii, Hikari & Farabi-Asl, Hadi, 2018. "A comprehensive approach for wind power plant potential assessment, application to northwestern Iran," Energy, Elsevier, vol. 164(C), pages 344-358.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gopal, C. & Mohanraj, M. & Chandramohan, P. & Chandrasekar, P., 2013. "Renewable energy source water pumping systems—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 351-370.
    2. Cloutier, Michael & Rowley, Paul, 2011. "The feasibility of renewable energy sources for pumping clean water in sub-Saharan Africa: A case study for Central Nigeria," Renewable Energy, Elsevier, vol. 36(8), pages 2220-2226.
    3. Joselin Herbert, G.M. & Iniyan, S. & Amutha, D., 2014. "A review of technical issues on the development of wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 619-641.
    4. Shafiqur Rehman & Md. Mahbub Alam & Luai M. Alhems & M. Mujahid Rafique, 2018. "Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review," Energies, MDPI, vol. 11(3), pages 1-34, February.
    5. Aliyu, Mansur & Hassan, Ghassan & Said, Syed A. & Siddiqui, Muhammad U. & Alawami, Ali T. & Elamin, Ibrahim M., 2018. "A review of solar-powered water pumping systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 61-76.
    6. Hrayshat, Eyad S., 2005. "Wind availability and its potentials for electricity generation in Tafila, Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(1), pages 111-117, February.
    7. Chancham, Chana & Waewsak, Jompob & Gagnon, Yves, 2017. "Offshore wind resource assessment and wind power plant optimization in the Gulf of Thailand," Energy, Elsevier, vol. 139(C), pages 706-731.
    8. Das, Himadry Shekhar & Yatim, A.H.M. & Tan, Chee Wei & Lau, Kwan Yiew, 2016. "Proposition of a PV/tidal powered micro-hydro and diesel hybrid system: A southern Bangladesh focus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1137-1148.
    9. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G. & Stefanakis, Ioannis & Spanos, Petros & Stefanakis, Nikos, 2013. "Technical details regarding the design, the construction and the operation of seawater pumped storage systems," Energy, Elsevier, vol. 55(C), pages 619-630.
    10. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    11. Audierne, Etienne & Elizondo, Jorge & Bergami, Leonardo & Ibarra, Humberto & Probst, Oliver, 2010. "Analysis of the furling behavior of small wind turbines," Applied Energy, Elsevier, vol. 87(7), pages 2278-2292, July.
    12. Rajvikram Madurai Elavarasan & G. M. Shafiullah & Nallapaneni Manoj Kumar & Sanjeevikumar Padmanaban, 2019. "A State-of-the-Art Review on the Drive of Renewables in Gujarat, State of India: Present Situation, Barriers and Future Initiatives," Energies, MDPI, vol. 13(1), pages 1-30, December.
    13. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
    14. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    15. Mazhar H. Baloch & Safdar A. Abro & Ghulam Sarwar Kaloi & Nayyar H. Mirjat & Sohaib Tahir & M. Haroon Nadeem & Mehr Gul & Zubair A. Memon & Mahendar Kumar, 2017. "A Research on Electricity Generation from Wind Corridors of Pakistan (Two Provinces): A Technical Proposal for Remote Zones," Sustainability, MDPI, vol. 9(9), pages 1-31, September.
    16. Silva, Marcos Dornelas Freitas Machado e & Calijuri, Maria Lúcia & Sales, Francisco José Ferreira de & Souza, Mauro Henrique Batalha de & Lopes, Lucas Sampaio, 2014. "Integration of technologies and alternative sources of water and energy to promote the sustainability of urban landscapes," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 71-81.
    17. Koo, Junmo & Han, Gwon Deok & Choi, Hyung Jong & Shim, Joon Hyung, 2015. "Wind-speed prediction and analysis based on geological and distance variables using an artificial neural network: A case study in South Korea," Energy, Elsevier, vol. 93(P2), pages 1296-1302.
    18. Liu, Hui & Tian, Hong-qi & Pan, Di-fu & Li, Yan-fei, 2013. "Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks," Applied Energy, Elsevier, vol. 107(C), pages 191-208.
    19. Nor, Khalid Mohamed & Shaaban, Mohamed & Abdul Rahman, Hasimah, 2014. "Feasibility assessment of wind energy resources in Malaysia based on NWP models," Renewable Energy, Elsevier, vol. 62(C), pages 147-154.
    20. Byrne, John & Shen, Bo & Wallace, William, 1998. "The economics of sustainable energy for rural development: A study of renewable energy in rural China," Energy Policy, Elsevier, vol. 26(1), pages 45-54, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:7:p:4470-4478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.