IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v163y2022ics1364032122004154.html
   My bibliography  Save this article

Modeling daily global solar radiation using only temperature data: Past, development, and future

Author

Listed:
  • Qiu, Rangjian
  • Li, Longan
  • Wu, Lifeng
  • Agathokleous, Evgenios
  • Liu, Chunwei
  • Zhang, Baozhong
  • Luo, Yufeng
  • Sun, Shanlei

Abstract

Accurate determination on global solar radiation (Rs) is essential in many disciplines and sectors. This study comprehensively reviewed 78 existing models and developed 4 new models (N1-1∼N1-4) for estimating daily Rs using only temperature data. The best model was then applied to forecast daily Rs using temperature data in weather forecast. All models were calibrated and tested using data collected from 105 radiation stations scattered across China. Daily data of temperature were also collected from 703 additional meteorological stations to classify diurnal temperature range (ΔT) zones in China. The results showed that China could be divided into five ΔT zones. The newly developed model N1-4 was the most accurate among all models for various ΔT zones, with values of coefficient of determination, index of agreement, mean bias error, mean absolute bias error, root mean square error, and relative root mean square error in the ranges of 0.660–0.737, 0.888–0.919, −0.023–0.100 MJ m−2 d−1, 2.691–3.195 MJ m−2 d−1, 3.725–4.231 MJ m−2 d−1, and 0.224–0.352, respectively. The generalized coefficients of the N1-4 model were also derived and further used for estimating daily Rs in areas with or without Rs data when there are only temperature data. The model N1-4 was successfully applied to predict daily Rs in varying ΔT zones with forecast temperature data for a lead time of 1–8 days. This new model is recommended for forecasting daily Rs in zones with high ΔT for a long lead time and in zones with low ΔT for a short lead time.

Suggested Citation

  • Qiu, Rangjian & Li, Longan & Wu, Lifeng & Agathokleous, Evgenios & Liu, Chunwei & Zhang, Baozhong & Luo, Yufeng & Sun, Shanlei, 2022. "Modeling daily global solar radiation using only temperature data: Past, development, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
  • Handle: RePEc:eee:rensus:v:163:y:2022:i:c:s1364032122004154
    DOI: 10.1016/j.rser.2022.112511
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122004154
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112511?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qin, Wenmin & Wang, Lunche & Lin, Aiwen & Zhang, Ming & Xia, Xiangao & Hu, Bo & Niu, Zigeng, 2018. "Comparison of deterministic and data-driven models for solar radiation estimation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 579-594.
    2. Jahani, Babak & Dinpashoh, Y. & Raisi Nafchi, Atefeh, 2017. "Evaluation and development of empirical models for estimating daily solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 878-891.
    3. Ertekin, Can & Yaldız, Osman, 1999. "Estimation of monthly average daily global radiation on horizontal surface for Antalya (Turkey)," Renewable Energy, Elsevier, vol. 17(1), pages 95-102.
    4. Yufeng Luo & Seydou Traore & Xinwei Lyu & Weiguang Wang & Ying Wang & Yongyu Xie & Xiyun Jiao & Guy Fipps, 2015. "Medium Range Daily Reference Evapotranspiration Forecasting by Using ANN and Public Weather Forecasts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3863-3876, August.
    5. Qiu, Rangjian & Du, Taisheng & Kang, Shaozhong & Chen, Renqiang & Wu, Laosheng, 2015. "Assessing the SIMDualKc model for estimating evapotranspiration of hot pepper grown in a solar greenhouse in Northwest China," Agricultural Systems, Elsevier, vol. 138(C), pages 1-9.
    6. Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2015. "Review and statistical analysis of different global solar radiation sunshine models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1869-1880.
    7. Fan, Junliang & Chen, Baiquan & Wu, Lifeng & Zhang, Fucang & Lu, Xianghui & Xiang, Youzhen, 2018. "Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions," Energy, Elsevier, vol. 144(C), pages 903-914.
    8. Korachagaon, Iranna & Bapat, V.N., 2012. "General formula for the estimation of global solar radiation on earth’s surface around the globe," Renewable Energy, Elsevier, vol. 41(C), pages 394-400.
    9. Chen, Ji-Long & He, Lei & Yang, Hong & Ma, Maohua & Chen, Qiao & Wu, Sheng-Jun & Xiao, Zuo-lin, 2019. "Empirical models for estimating monthly global solar radiation: A most comprehensive review and comparative case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 91-111.
    10. Kostić, Rastko & Mikulović, Jovan, 2017. "The empirical models for estimating solar insolation in Serbia by using meteorological data on cloudiness," Renewable Energy, Elsevier, vol. 114(PB), pages 1281-1293.
    11. Hassan, Gasser E. & Youssef, M. Elsayed & Mohamed, Zahraa E. & Ali, Mohamed A. & Hanafy, Ahmed A., 2016. "New Temperature-based Models for Predicting Global Solar Radiation," Applied Energy, Elsevier, vol. 179(C), pages 437-450.
    12. Jiang, Yingni, 2009. "Estimation of monthly mean daily diffuse radiation in China," Applied Energy, Elsevier, vol. 86(9), pages 1458-1464, September.
    13. Yang, Yang & Cui, Yuanlai & Luo, Yufeng & Lyu, Xinwei & Traore, Seydou & Khan, Shahbaz & Wang, Weiguang, 2016. "Short-term forecasting of daily reference evapotranspiration using the Penman-Monteith model and public weather forecasts," Agricultural Water Management, Elsevier, vol. 177(C), pages 329-339.
    14. Besharat, Fariba & Dehghan, Ali A. & Faghih, Ahmad R., 2013. "Empirical models for estimating global solar radiation: A review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 798-821.
    15. Baser, Furkan & Demirhan, Haydar, 2017. "A fuzzy regression with support vector machine approach to the estimation of horizontal global solar radiation," Energy, Elsevier, vol. 123(C), pages 229-240.
    16. Zhang, Jianyuan & Zhao, Li & Deng, Shuai & Xu, Weicong & Zhang, Ying, 2017. "A critical review of the models used to estimate solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 314-329.
    17. Almorox, J. & Hontoria, C. & Benito, M., 2011. "Models for obtaining daily global solar radiation with measured air temperature data in Madrid (Spain)," Applied Energy, Elsevier, vol. 88(5), pages 1703-1709, May.
    18. Almorox, Javier & Bocco, Mónica & Willington, Enrique, 2013. "Estimation of daily global solar radiation from measured temperatures at Cañada de Luque, Córdoba, Argentina," Renewable Energy, Elsevier, vol. 60(C), pages 382-387.
    19. Prieto, Jesús-Ignacio & García, David, 2022. "Global solar radiation models: A critical review from the point of view of homogeneity and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    20. Voyant, Cyril & Soubdhan, Ted & Lauret, Philippe & David, Mathieu & Muselli, Marc, 2015. "Statistical parameters as a means to a priori assess the accuracy of solar forecasting models," Energy, Elsevier, vol. 90(P1), pages 671-679.
    21. Urraca, R. & Martinez-de-Pison, E. & Sanz-Garcia, A. & Antonanzas, J. & Antonanzas-Torres, F., 2017. "Estimation methods for global solar radiation: Case study evaluation of five different approaches in central Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1098-1113.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guosheng Duan & Lifeng Wu & Fa Liu & Yicheng Wang & Shaofei Wu, 2022. "Improvement in Solar-Radiation Forecasting Based on Evolutionary KNEA Method and Numerical Weather Prediction," Sustainability, MDPI, vol. 14(11), pages 1-20, June.
    2. Qin, Shujing & Liu, Zhihe & Qiu, Rangjian & Luo, Yufeng & Wu, Jingwei & Zhang, Baozhong & Wu, Lifeng & Agathokleous, Evgenios, 2023. "Short–term global solar radiation forecasting based on an improved method for sunshine duration prediction and public weather forecasts," Applied Energy, Elsevier, vol. 343(C).
    3. Qiu, Rangjian & Luo, Yufeng & Wu, Jingwei & Zhang, Baozhong & Liu, Zhihe & Agathokleous, Evgenios & Yang, Xiumei & Hu, Wei & Clothier, Brent, 2023. "Short–term forecasting of daily evapotranspiration from rice using a modified Priestley–Taylor model and public weather forecasts," Agricultural Water Management, Elsevier, vol. 277(C).
    4. Gong, Xuewen & Li, Xiaoming & Li, Yu & Bo, Guokui & Qiu, Rangjian & Huang, Zongdong & Gao, Shikai & Wang, Shunsheng, 2023. "An improved model to simulate soil water and heat: A case study for drip-irrigated tomato grown in a greenhouse," Agricultural Water Management, Elsevier, vol. 277(C).
    5. Zhang, Qi & Yu, Xin & Qiu, Rangjian & Liu, Zhongxian & Yang, Zaiqiang, 2022. "Evolution, severity, and spatial extent of compound drought and heat events in north China based on copula model," Agricultural Water Management, Elsevier, vol. 273(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ji-Long & He, Lei & Yang, Hong & Ma, Maohua & Chen, Qiao & Wu, Sheng-Jun & Xiao, Zuo-lin, 2019. "Empirical models for estimating monthly global solar radiation: A most comprehensive review and comparative case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 91-111.
    2. Qin, Shujing & Liu, Zhihe & Qiu, Rangjian & Luo, Yufeng & Wu, Jingwei & Zhang, Baozhong & Wu, Lifeng & Agathokleous, Evgenios, 2023. "Short–term global solar radiation forecasting based on an improved method for sunshine duration prediction and public weather forecasts," Applied Energy, Elsevier, vol. 343(C).
    3. Prieto, Jesús-Ignacio & García, David, 2022. "Global solar radiation models: A critical review from the point of view of homogeneity and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    4. Fan, Junliang & Chen, Baiquan & Wu, Lifeng & Zhang, Fucang & Lu, Xianghui & Xiang, Youzhen, 2018. "Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions," Energy, Elsevier, vol. 144(C), pages 903-914.
    5. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Zeng, Wenzhi & Wang, Xiukang & Zou, Haiyang, 2019. "Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 186-212.
    6. Dariusz Czekalski & Paweł Obstawski & Tomasz Bakoń, 2020. "Possibilities to Estimate Daily Solar Radiation on 2-Axis Tracking Plane Using a Model Based on Temperature Amplitude," Sustainability, MDPI, vol. 12(23), pages 1-19, November.
    7. Zang, Haixiang & Jiang, Xin & Cheng, LiLin & Zhang, Fengchun & Wei, Zhinong & Sun, Guoqiang, 2022. "Combined empirical and machine learning modeling method for estimation of daily global solar radiation for general meteorological observation stations," Renewable Energy, Elsevier, vol. 195(C), pages 795-808.
    8. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Wang, Xiukang & Lu, Xianghui & Xiang, Youzhen, 2018. "Evaluating the effect of air pollution on global and diffuse solar radiation prediction using support vector machine modeling based on sunshine duration and air temperature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 732-747.
    9. Hassan, Gasser E. & Youssef, M. Elsayed & Mohamed, Zahraa E. & Ali, Mohamed A. & Hanafy, Ahmed A., 2016. "New Temperature-based Models for Predicting Global Solar Radiation," Applied Energy, Elsevier, vol. 179(C), pages 437-450.
    10. Zang, Haixiang & Cheng, Lilin & Ding, Tao & Cheung, Kwok W. & Wang, Miaomiao & Wei, Zhinong & Sun, Guoqiang, 2019. "Estimation and validation of daily global solar radiation by day of the year-based models for different climates in China," Renewable Energy, Elsevier, vol. 135(C), pages 984-1003.
    11. Zang, Haixiang & Cheng, Lilin & Ding, Tao & Cheung, Kwok W. & Wang, Miaomiao & Wei, Zhinong & Sun, Guoqiang, 2020. "Application of functional deep belief network for estimating daily global solar radiation: A case study in China," Energy, Elsevier, vol. 191(C).
    12. Zhang, Jianyuan & Zhao, Li & Deng, Shuai & Xu, Weicong & Zhang, Ying, 2017. "A critical review of the models used to estimate solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 314-329.
    13. Bouchouicha, Kada & Hassan, Muhammed A. & Bailek, Nadjem & Aoun, Nouar, 2019. "Estimating the global solar irradiation and optimizing the error estimates under Algerian desert climate," Renewable Energy, Elsevier, vol. 139(C), pages 844-858.
    14. Jahani, Babak & Dinpashoh, Y. & Raisi Nafchi, Atefeh, 2017. "Evaluation and development of empirical models for estimating daily solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 878-891.
    15. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Ma, Xin & Bai, Hua, 2019. "Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 168-186.
    16. Rivero, M. & Orozco, S. & Sellschopp, F.S. & Loera-Palomo, R., 2017. "A new methodology to extend the validity of the Hargreaves-Samani model to estimate global solar radiation in different climates: Case study Mexico," Renewable Energy, Elsevier, vol. 114(PB), pages 1340-1352.
    17. Wang, Lunche & Kisi, Ozgur & Zounemat-Kermani, Mohammad & Salazar, Germán Ariel & Zhu, Zhongmin & Gong, Wei, 2016. "Solar radiation prediction using different techniques: model evaluation and comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 384-397.
    18. Paredes, P. & Pereira, L.S., 2019. "Computing FAO56 reference grass evapotranspiration PM-ETo from temperature with focus on solar radiation," Agricultural Water Management, Elsevier, vol. 215(C), pages 86-102.
    19. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.
    20. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:163:y:2022:i:c:s1364032122004154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.