IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i8p3717-3732.html
   My bibliography  Save this article

Review of materials and manufacturing options for large area flexible dye solar cells

Author

Listed:
  • Hashmi, Ghufran
  • Miettunen, Kati
  • Peltola, Timo
  • Halme, Janne
  • Asghar, Imran
  • Aitola, Kerttu
  • Toivola, Minna
  • Lund, Peter

Abstract

This review covers the current state of the art related to up-scaling and commercialization of dye solar cells (DSC). The cost analysis of the different components and manufacturing of DSC gives an estimate on the overall production costs. Moreover, it provides an insight in which areas improvement is needed in order to reach significant cost reductions. As a result of the cost analysis, transferring the technology to flexible substrates and employment of simple roll-to-roll production methods were found the key issues. The focus of this work was set accordingly. In this work, appropriate materials along with their unique fabrication processes and different design methods are investigated highlighting their advantages and limitations. The basic goal is to identify the best materials and preparation techniques suitable for an ideal roll-to-roll process of flexible dye solar module fabrication as well as the areas where further development is still needed.

Suggested Citation

  • Hashmi, Ghufran & Miettunen, Kati & Peltola, Timo & Halme, Janne & Asghar, Imran & Aitola, Kerttu & Toivola, Minna & Lund, Peter, 2011. "Review of materials and manufacturing options for large area flexible dye solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3717-3732.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:8:p:3717-3732
    DOI: 10.1016/j.rser.2011.06.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211100236X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2011.06.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McConnell, R. D., 2002. "Assessment of the dye-sensitized solar cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(3), pages 271-293, September.
    2. Wang, Hai & Liu, Yong & Xu, Hongmei & Dong, Xian & Shen, Hui & Wang, Yuanhao & Yang, Hongxing, 2009. "An investigation on the novel structure of dye-sensitized solar cell with integrated photoanode," Renewable Energy, Elsevier, vol. 34(6), pages 1635-1638.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Venkateswari, R. & Sreejith, S., 2019. "Factors influencing the efficiency of photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 376-394.
    2. Popoola, Idris K. & Gondal, Mohammed A. & Qahtan, Talal F., 2018. "Recent progress in flexible perovskite solar cells: Materials, mechanical tolerance and stability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3127-3151.
    3. Zardetto, V. & Mincuzzi, G. & De Rossi, F. & Di Giacomo, F. & Reale, A. & Di Carlo, A. & Brown, T.M., 2014. "Outdoor and diurnal performance of large conformal flexible metal/plastic dye solar cells," Applied Energy, Elsevier, vol. 113(C), pages 1155-1161.
    4. Parisi, Maria Laura & Maranghi, Simone & Basosi, Riccardo, 2014. "The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: A life cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 124-138.
    5. Ummartyotin, S. & Pechyen, C., 2016. "Strategies for development and implementation of bio-based materials as effective renewable resources of energy: A comprehensive review on adsorbent technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 654-664.
    6. Asim, Nilofar & Sopian, Kamaruzzaman & Ahmadi, Shideh & Saeedfar, Kasra & Alghoul, M.A. & Saadatian, Omidreza & Zaidi, Saleem H., 2012. "A review on the role of materials science in solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5834-5847.
    7. Ng, C.H. & Lim, H.N. & Hayase, S. & Zainal, Z. & Huang, N.M., 2018. "Photovoltaic performances of mono- and mixed-halide structures for perovskite solar cell: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 248-274.
    8. Pérez-Alonso, J. & Pérez-García, M. & Pasamontes-Romera, M. & Callejón-Ferre, A.J., 2012. "Performance analysis and neural modelling of a greenhouse integrated photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4675-4685.
    9. Mozaffari, Samaneh & Nateghi, Mohammad Reza & Zarandi, Mahmood Borhani, 2017. "An overview of the Challenges in the commercialization of dye sensitized solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 675-686.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Shanhe & Liu, Tie & Wang, Yuan & Chen, Xiaohang & Wang, Jintong & Chen, Jincan, 2014. "Performance optimization analyses and parametric design criteria of a dye-sensitized solar cell thermoelectric hybrid device," Applied Energy, Elsevier, vol. 120(C), pages 16-22.
    2. Francis, L. & Sreekumaran Nair, A. & Jose, R. & Ramakrishna, S. & Thavasi, V. & Marsano, E., 2011. "Fabrication and characterization of dye-sensitized solar cells from rutile nanofibers and nanorods," Energy, Elsevier, vol. 36(1), pages 627-632.
    3. Giannouli, M. & Spiliopoulou, F., 2012. "Effects of the morphology of nanostructured ZnO films on the efficiency of dye-sensitized solar cells," Renewable Energy, Elsevier, vol. 41(C), pages 115-122.
    4. Zouhri, Khalid, 2018. "The effect of iodide and tri-iodide on the dye sensitized solar cell," Renewable Energy, Elsevier, vol. 126(C), pages 210-225.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:8:p:3717-3732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.