IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v101y2019icp376-394.html
   My bibliography  Save this article

Factors influencing the efficiency of photovoltaic system

Author

Listed:
  • Venkateswari, R.
  • Sreejith, S.

Abstract

Long-time search for green energy as a replacement of the depleting conventional sources to the eternal power demand still remains as an unanswered question. But the steady growth in the contribution of solar energy towards the electrical power generation for the past three decades have persuaded many researchers to consider it as a viable option. However, the power harnessed from solar PV is low due to its less conversion efficiency. Therefore, it is necessary to perform some critical analysis on the factors improving the efficiency of the solar PV system. In this paper, an attempt is made in performing a detailed comprehensive review on the factors affecting the efficiency of solar cell. A detailed review is carried out on basic material used for solar cells, Maximum Power Point Tracking (MPPT) Techniques and the DC-DC converters used for power conversion.

Suggested Citation

  • Venkateswari, R. & Sreejith, S., 2019. "Factors influencing the efficiency of photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 376-394.
  • Handle: RePEc:eee:rensus:v:101:y:2019:i:c:p:376-394
    DOI: 10.1016/j.rser.2018.11.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118307585
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.11.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumavat, Priyanka P. & Sonar, Prashant & Dalal, Dipak S., 2017. "An overview on basics of organic and dye sensitized solar cells, their mechanism and recent improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1262-1287.
    2. Hashmi, Ghufran & Miettunen, Kati & Peltola, Timo & Halme, Janne & Asghar, Imran & Aitola, Kerttu & Toivola, Minna & Lund, Peter, 2011. "Review of materials and manufacturing options for large area flexible dye solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3717-3732.
    3. Feltrin, Andrea & Freundlich, Alex, 2008. "Material considerations for terawatt level deployment of photovoltaics," Renewable Energy, Elsevier, vol. 33(2), pages 180-185.
    4. Bastidas-Rodriguez, J.D. & Petrone, G. & Ramos-Paja, C.A. & Spagnuolo, G., 2017. "A genetic algorithm for identifying the single diode model parameters of a photovoltaic panel," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 131(C), pages 38-54.
    5. Sabzali, Ahmad J. & Ismail, Esam H. & Behbehani, Hussain M., 2015. "High voltage step-up integrated double Boost–Sepic DC–DC converter for fuel-cell and photovoltaic applications," Renewable Energy, Elsevier, vol. 82(C), pages 44-53.
    6. Ram, J. Prasanth & Babu, T. Sudhakar & Rajasekar, N., 2017. "A comprehensive review on solar PV maximum power point tracking techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 826-847.
    7. Al-Saffar, Mustafa A. & Ismail, Esam H. & Sabzali, Ahmad J., 2013. "Family of ZC-ZVS converters with wide voltage range for renewable energy systems," Renewable Energy, Elsevier, vol. 56(C), pages 32-43.
    8. G, Dileep. & Singh, S.N., 2017. "Selection of non-isolated DC-DC converters for solar photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1230-1247.
    9. Mehmood, Umer & Al-Ahmed, Amir & Afzaal, Mohammad & Al-Sulaiman, Fahad A. & Daud, Muhammad, 2017. "Recent progress and remaining challenges in organometallic halides based perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1-14.
    10. Rizzo, Santi Agatino & Scelba, Giacomo, 2015. "ANN based MPPT method for rapidly variable shading conditions," Applied Energy, Elsevier, vol. 145(C), pages 124-132.
    11. Kandemir, Ekrem & Cetin, Numan S. & Borekci, Selim, 2017. "A comprehensive overview of maximum power extraction methods for PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 93-112.
    12. Abdalla, I. & Corda, J. & Zhang, L., 2016. "Optimal control of a multilevel DC-link converter photovoltaic system for maximum power generation," Renewable Energy, Elsevier, vol. 92(C), pages 1-11.
    13. Abu Eldahab, Yasser E. & Saad, Naggar H. & Zekry, Abdalhalim, 2017. "Enhancing the tracking techniques for the global maximum power point under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1173-1183.
    14. Kota, Venkata Reddy & Bhukya, Muralidhar Nayak, 2017. "A novel linear tangents based P&O scheme for MPPT of a PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 257-267.
    15. Mohapatra, Alivarani & Nayak, Byamakesh & Das, Priti & Mohanty, Kanungo Barada, 2017. "A review on MPPT techniques of PV system under partial shading condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 854-867.
    16. Ram, J.Prasanth & Rajasekar, N. & Miyatake, Masafumi, 2017. "Design and overview of maximum power point tracking techniques in wind and solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1138-1159.
    17. Harrag, Abdelghani & Messalti, Sabir, 2015. "Variable step size modified P&O MPPT algorithm using GA-based hybrid offline/online PID controller," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1247-1260.
    18. Valer, L. Roberto & Manito, Alex. R.A. & Ribeiro, Tina B. Selles & Zilles, Roberto & Pinho, João T., 2017. "Issues in PV systems applied to rural electrification in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1033-1043.
    19. Ubani, C.A. & Ibrahim, M.A. & Teridi, M.A.M., 2017. "Moving into the domain of perovskite sensitized solar cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 907-915.
    20. Bendib, Boualem & Belmili, Hocine & Krim, Fateh, 2015. "A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 637-648.
    21. Asim, Nilofar & Sopian, Kamaruzzaman & Ahmadi, Shideh & Saeedfar, Kasra & Alghoul, M.A. & Saadatian, Omidreza & Zaidi, Saleem H., 2012. "A review on the role of materials science in solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5834-5847.
    22. Lee, Taesoo D. & Ebong, Abasifreke U., 2017. "A review of thin film solar cell technologies and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1286-1297.
    23. Sivakumar, P. & Abdul Kader, Abdullah & Kaliavaradhan, Yogeshraj & Arutchelvi, M., 2015. "Analysis and enhancement of PV efficiency with incremental conductance MPPT technique under non-linear loading conditions," Renewable Energy, Elsevier, vol. 81(C), pages 543-550.
    24. Seyedmahmoudian, M. & Horan, B. & Soon, T. Kok & Rahmani, R. & Than Oo, A. Muang & Mekhilef, S. & Stojcevski, A., 2016. "State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 435-455.
    25. Verma, Deepak & Nema, Savita & Shandilya, A.M. & Dash, Soubhagya K., 2016. "Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1018-1034.
    26. Saravanan, S. & Ramesh Babu, N., 2017. "Analysis and implementation of high step-up DC-DC converter for PV based grid application," Applied Energy, Elsevier, vol. 190(C), pages 64-72.
    27. Boumaaraf, Houria & Talha, Abdelaziz & Bouhali, Omar, 2015. "A three-phase NPC grid-connected inverter for photovoltaic applications using neural network MPPT," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1171-1179.
    28. Chandrasekaran, J. & Nithyaprakash, D. & Ajjan, K.B. & Maruthamuthu, S. & Manoharan, D. & Kumar, S., 2011. "Hybrid solar cell based on blending of organic and inorganic materials--An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1228-1238, February.
    29. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
    30. Eltawil, Mohamed A. & Zhao, Zhengming, 2013. "MPPT techniques for photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 793-813.
    31. Ahmed, Jubaer & Salam, Zainal, 2014. "A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability," Applied Energy, Elsevier, vol. 119(C), pages 118-130.
    32. Karami, Nabil & Moubayed, Nazih & Outbib, Rachid, 2017. "General review and classification of different MPPT Techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 1-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vinaya Chandrakant Chavan & Suresh Mikkili & Tomonobu Senjyu, 2022. "Hardware Implementation of Novel Shade Dispersion PV Reconfiguration Technique to Enhance Maximum Power under Partial Shading Conditions," Energies, MDPI, vol. 15(10), pages 1-16, May.
    2. Srinivasan Vadivel & C. S. Boopthi & Sridhar Ramasamy & Mominul Ahsan & Julfikar Haider & Eduardo M. G. Rodrigues, 2021. "Performance Enhancement of a Partially Shaded Photovoltaic Array by Optimal Reconfiguration and Current Injection Schemes," Energies, MDPI, vol. 14(19), pages 1-21, October.
    3. Mehdi, Maryam & Ammari, Nabil & Alami Merrouni, Ahmed & El Gallassi, Hicham & Dahmani, Mohamed & Ghennioui, Abdellatif, 2023. "An experimental comparative analysis of different PV technologies performance including the influence of hot-arid climatic parameters: Toward a realistic yield assessment for desert locations," Renewable Energy, Elsevier, vol. 205(C), pages 695-716.
    4. Wang, J. & Xiao, F. & Zhao, H., 2021. "Thermoelectric, piezoelectric and photovoltaic harvesting technologies for pavement engineering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Bouaichi, Abdellatif & Alami Merrouni, Ahmed & Hajjaj, Charaf & Messaoudi, Choukri & Ghennioui, Abdellatif & Benlarabi, Ahmed & Ikken, Badr & El Amrani, Aumeur & Zitouni, Houssin, 2019. "In-situ evaluation of the early PV module degradation of various technologies under harsh climatic conditions: The case of Morocco," Renewable Energy, Elsevier, vol. 143(C), pages 1500-1518.
    6. Subramanian Vasantharaj & Vairavasundaram Indragandhi & Vairavasundaram Subramaniyaswamy & Yuvaraja Teekaraman & Ramya Kuppusamy & Srete Nikolovski, 2021. "Efficient Control of DC Microgrid with Hybrid PV—Fuel Cell and Energy Storage Systems," Energies, MDPI, vol. 14(11), pages 1-18, June.
    7. Tito G. Amaral & Vitor Fernão Pires & Armando J. Pires, 2021. "Fault Detection in PV Tracking Systems Using an Image Processing Algorithm Based on PCA," Energies, MDPI, vol. 14(21), pages 1-18, November.
    8. Hu, Mingke & Zhao, Bin & Suhendri, & Ao, Xianze & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2022. "Applications of radiative sky cooling in solar energy systems: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    9. Ehtisham Lodhi & Fei-Yue Wang & Gang Xiong & Ghulam Ali Mallah & Muhammad Yaqoob Javed & Tariku Sinshaw Tamir & David Wenzhong Gao, 2021. "A Dragonfly Optimization Algorithm for Extracting Maximum Power of Grid-Interfaced PV Systems," Sustainability, MDPI, vol. 13(19), pages 1-27, September.
    10. Victor Arturo Martinez Lopez & Ugnė Žindžiūtė & Hesan Ziar & Miro Zeman & Olindo Isabella, 2022. "Study on the Effect of Irradiance Variability on the Efficiency of the Perturb-and-Observe Maximum Power Point Tracking Algorithm," Energies, MDPI, vol. 15(20), pages 1-12, October.
    11. Shitao Wang & Yi Shen & Junbing Zhou & Caixia Li & Lijun Ma, 2022. "Efficiency Enhancement of Tilted Bifacial Photovoltaic Modules with Horizontal Single-Axis Tracker—The Bifacial Companion Method," Energies, MDPI, vol. 15(4), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
    3. Kermadi, Mostefa & Berkouk, El Madjid, 2017. "Artificial intelligence-based maximum power point tracking controllers for Photovoltaic systems: Comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 369-386.
    4. Haidar Islam & Saad Mekhilef & Noraisyah Binti Mohamed Shah & Tey Kok Soon & Mehdi Seyedmahmousian & Ben Horan & Alex Stojcevski, 2018. "Performance Evaluation of Maximum Power Point Tracking Approaches and Photovoltaic Systems," Energies, MDPI, vol. 11(2), pages 1-24, February.
    5. Musong L. Katche & Augustine B. Makokha & Siagi O. Zachary & Muyiwa S. Adaramola, 2023. "A Comprehensive Review of Maximum Power Point Tracking (MPPT) Techniques Used in Solar PV Systems," Energies, MDPI, vol. 16(5), pages 1-23, February.
    6. Jately, Vibhu & Azzopardi, Brian & Joshi, Jyoti & Venkateswaran V, Balaji & Sharma, Abhinav & Arora, Sudha, 2021. "Experimental Analysis of hill-climbing MPPT algorithms under low irradiance levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Ram, J.Prasanth & Rajasekar, N. & Miyatake, Masafumi, 2017. "Design and overview of maximum power point tracking techniques in wind and solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1138-1159.
    8. Poompavai, T. & Kowsalya, M., 2019. "Control and energy management strategies applied for solar photovoltaic and wind energy fed water pumping system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 108-122.
    9. Joshi, Puneet & Arora, Sudha, 2017. "Maximum power point tracking methodologies for solar PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1154-1177.
    10. Muhammad Hafeez Mohamed Hariri & Mohd Khairunaz Mat Desa & Syafrudin Masri & Muhammad Ammirrul Atiqi Mohd Zainuri, 2020. "Grid-Connected PV Generation System—Components and Challenges: A Review," Energies, MDPI, vol. 13(17), pages 1-28, August.
    11. Ram, J. Prasanth & Babu, T. Sudhakar & Rajasekar, N., 2017. "A comprehensive review on solar PV maximum power point tracking techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 826-847.
    12. Haoming Liu & Muhammad Yasir Ali Khan & Xiaoling Yuan, 2023. "Hybrid Maximum Power Extraction Methods for Photovoltaic Systems: A Comprehensive Review," Energies, MDPI, vol. 16(15), pages 1-64, July.
    13. Arshdeep Singh & Shimi Sudha Letha, 2019. "Emerging energy sources for electric vehicle charging station," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2043-2082, October.
    14. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    15. Zahra Bel Hadj Salah & Saber Krim & Mohamed Ali Hajjaji & Badr M. Alshammari & Khalid Alqunun & Ahmed Alzamil & Tawfik Guesmi, 2023. "A New Efficient Cuckoo Search MPPT Algorithm Based on a Super-Twisting Sliding Mode Controller for Partially Shaded Standalone Photovoltaic System," Sustainability, MDPI, vol. 15(12), pages 1-38, June.
    16. Hong, Ying-Yi & Beltran, Angelo A. & Paglinawan, Arnold C., 2018. "A robust design of maximum power point tracking using Taguchi method for stand-alone PV system," Applied Energy, Elsevier, vol. 211(C), pages 50-63.
    17. Singh, Bhuwan Pratap & Goyal, Sunil Kumar & Siddiqui, Shahbaz Ahmed & Saraswat, Amit & Ucheniya, Ravi, 2022. "Intersection Point Determination Method: A novel MPPT approach for sudden and fast changing environmental conditions," Renewable Energy, Elsevier, vol. 200(C), pages 614-632.
    18. Messalti, Sabir & Harrag, Abdelghani & Loukriz, Abdelhamid, 2017. "A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 221-233.
    19. Mostafa Ahmed & Ibrahim Harbi & Ralph Kennel & José Rodríguez & Mohamed Abdelrahem, 2022. "Evaluation of the Main Control Strategies for Grid-Connected PV Systems," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
    20. Peng, Lele & Zheng, Shubin & Chai, Xiaodong & Li, Liming, 2018. "A novel tangent error maximum power point tracking algorithm for photovoltaic system under fast multi-changing solar irradiances," Applied Energy, Elsevier, vol. 210(C), pages 303-316.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:101:y:2019:i:c:p:376-394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.