IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v156y2022ics1364032121012119.html
   My bibliography  Save this article

A comprehensive review on building integrated photovoltaic systems: Emphasis to technological advancements, outdoor testing, and predictive maintenance

Author

Listed:
  • Pillai, Dhanup S.
  • Shabunko, Veronika
  • Krishna, Amal

Abstract

Building integrated photovoltaics (BIPV) has enormous potential for on-site renewable energy generation in urban environments. However, BIPV systems are still in a relatively nascent stage with few commercial installations. Therefore, applied evaluation of small or medium-scale outdoor testbeds is critical to better understand the performance, reliability and operational issues associated with BIPV systems. This in turn helps early BIPV adopters in obtaining benchmark values and making more informed decisions during the system planning phase itself. On this viewpoint, this article provides a comprehensive overview on the global BIPV market, products, technologies, and applications. Also, given the importance of real-world testing and data analytics, this work conducts an in-depth analysis of 35 different BIPV outdoor test systems and its test results reported in literature. The assessment is carried out in two steps: (i) description of the testbed systems using various electrical, environmental, and physical factors that are monitored and reported; and (ii) evaluation of the testbed results with a focus on the quantitative electrical performance and economic parameters. A set of critical performance parameters has been defined, compiled, and quantitatively analyzed in this manuscript for the comparative study on various BIPV testbeds: 1) test duration, 2) specific energy yield, 3) energy efficiency, 4) system type, 5) module interconnection, 6) inverter efficiency, 7) performance ratio, 8) payback period and 9) unit energy cost. While no specific methods are available to quantify the performance of BIPV systems, an assessment based on annual specific yield is proposed in this review to identify underperforming test beds. With the proposed benchmark, the investigations reveal that almost 60% of the test beds reviewed are underperforming. Furthermore, based on the implications attained, some suggestions to improve the performance of existing test beds and the scope of utilizing such systems for predictive maintenance are provided. With the growing importance of outdoor test bedding, this document is envisaged to serve as a valuable reference for engineers, architects, buildings owners and scientists working on BIPV systems.

Suggested Citation

  • Pillai, Dhanup S. & Shabunko, Veronika & Krishna, Amal, 2022. "A comprehensive review on building integrated photovoltaic systems: Emphasis to technological advancements, outdoor testing, and predictive maintenance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:rensus:v:156:y:2022:i:c:s1364032121012119
    DOI: 10.1016/j.rser.2021.111946
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121012119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111946?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, L. & Yang, H.X., 2010. "Environmental payback time analysis of a roof-mounted building-integrated photovoltaic (BIPV) system in Hong Kong," Applied Energy, Elsevier, vol. 87(12), pages 3625-3631, December.
    2. Yang, Tingting & Athienitis, Andreas K., 2016. "A review of research and developments of building-integrated photovoltaic/thermal (BIPV/T) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 886-912.
    3. Tsai, Chin-Yi & Tsai, Chin-Yao, 2020. "See-through, light-through, and color modules for large-area tandem amorphous/microcrystalline silicon thin-film solar modules: Technology development and practical considerations for building-integra," Renewable Energy, Elsevier, vol. 145(C), pages 2637-2646.
    4. Chel, Arvind & Tiwari, G.N., 2011. "A case study of a typical 2.32Â kWP stand-alone photovoltaic (SAPV) in composite climate of New Delhi (India)," Applied Energy, Elsevier, vol. 88(4), pages 1415-1426, April.
    5. Lee, Jae Bum & Park, Jae Wan & Yoon, Jong Ho & Baek, Nam Choon & Kim, Dai Kon & Shin, U. Cheul, 2014. "An empirical study of performance characteristics of BIPV (Building Integrated Photovoltaic) system for the realization of zero energy building," Energy, Elsevier, vol. 66(C), pages 25-34.
    6. Shabunko, Veronika & Badrinarayanan, Samyuktha & Pillai, Dhanup S., 2021. "Evaluation of in-situ thermal transmittance of innovative building integrated photovoltaic modules: Application to thermal performance assessment for green mark certification in the tropics," Energy, Elsevier, vol. 235(C).
    7. Tsanakas, John A. & Ha, Long & Buerhop, Claudia, 2016. "Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: A review of research and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 695-709.
    8. Malathy, S. & Ramaprabha, R., 2015. "Comprehensive analysis on the role of array size and configuration on energy yield of photovoltaic systems under shaded conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 672-679.
    9. Park, K.E. & Kang, G.H. & Kim, H.I. & Yu, G.J. & Kim, J.T., 2010. "Analysis of thermal and electrical performance of semi-transparent photovoltaic (PV) module," Energy, Elsevier, vol. 35(6), pages 2681-2687.
    10. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.
    11. Ahmad, R. & Murtaza, Ali F. & Ahmed Sher, Hadeed & Tabrez Shami, Umar & Olalekan, Saheed, 2017. "An analytical approach to study partial shading effects on PV array supported by literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 721-732.
    12. Daneshazarian, Reza & Cuce, Erdem & Cuce, Pinar Mert & Sher, Farooq, 2018. "Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 473-492.
    13. Aristizábal, A.J. & Gordillo, G., 2008. "Performance monitoring results of the first grid-connected BIPV system in Colombia," Renewable Energy, Elsevier, vol. 33(11), pages 2475-2484.
    14. Osseweijer, Floor J.W. & van den Hurk, Linda B.P. & Teunissen, Erik J.H.M. & van Sark, Wilfried G.J.H.M., 2018. "A comparative review of building integrated photovoltaics ecosystems in selected European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1027-1040.
    15. Omer, S.A. & Wilson, R. & Riffat, S.B., 2003. "Monitoring results of two examples of building integrated PV (BIPV) systems in the UK," Renewable Energy, Elsevier, vol. 28(9), pages 1387-1399.
    16. Li, Guiqiang & Xuan, Qingdong & Akram, M.W. & Golizadeh Akhlaghi, Yousef & Liu, Haowen & Shittu, Samson, 2020. "Building integrated solar concentrating systems: A review," Applied Energy, Elsevier, vol. 260(C).
    17. Eke, Rustu & Senturk, Ali, 2013. "Monitoring the performance of single and triple junction amorphous silicon modules in two building integrated photovoltaic (BIPV) installations," Applied Energy, Elsevier, vol. 109(C), pages 154-162.
    18. Wittkopf, Stephen & Valliappan, Selvam & Liu, Lingyun & Ang, Kian Seng & Cheng, Seng Chye Jonathan, 2012. "Analytical performance monitoring of a 142.5kWp grid-connected rooftop BIPV system in Singapore," Renewable Energy, Elsevier, vol. 47(C), pages 9-20.
    19. Tripathy, M. & Sadhu, P.K. & Panda, S.K., 2016. "A critical review on building integrated photovoltaic products and their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 451-465.
    20. Agathokleous, Rafaela A. & Kalogirou, Soteris A., 2020. "Status, barriers and perspectives of building integrated photovoltaic systems," Energy, Elsevier, vol. 191(C).
    21. Pillai, Dhanup S. & Ram, J. Prasanth & Shabunko, Veronika & Kim, Young-Jin, 2021. "A new shade dispersion technique compatible for symmetrical and unsymmetrical photovoltaic (PV) arrays," Energy, Elsevier, vol. 225(C).
    22. Nuria Martín-Chivelet & Juan Carlos Gutiérrez & Miguel Alonso-Abella & Faustino Chenlo & José Cuenca, 2018. "Building Retrofit with Photovoltaics: Construction and Performance of a BIPV Ventilated Façade," Energies, MDPI, vol. 11(7), pages 1-15, July.
    23. Lee, Hyo Mun & Yoon, Jong Ho, 2018. "Power performance analysis of a transparent DSSC BIPV window based on 2 year measurement data in a full-scale mock-up," Applied Energy, Elsevier, vol. 225(C), pages 1013-1021.
    24. Parida, Bhubaneswari & Iniyan, S. & Goic, Ranko, 2011. "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1625-1636, April.
    25. Martin Khzouz & Evangelos I. Gkanas & Jia Shao & Farooq Sher & Dmytro Beherskyi & Ahmad El-Kharouf & Mansour Al Qubeissi, 2020. "Life Cycle Costing Analysis: Tools and Applications for Determining Hydrogen Production Cost for Fuel Cell Vehicle Technology," Energies, MDPI, vol. 13(15), pages 1-19, July.
    26. Lu, Yujie & Chang, Ruidong & Shabunko, Veronika & Lay Yee, Amy Tan, 2019. "The implementation of building-integrated photovoltaics in Singapore: drivers versus barriers," Energy, Elsevier, vol. 168(C), pages 400-408.
    27. Won Jun Choi & Hong Jin Joo & Jae-Wan Park & Sang-kyun Kim & Jae-Bum Lee, 2019. "Power Generation Performance of Building-Integrated Photovoltaic Systems in a Zero Energy Building," Energies, MDPI, vol. 12(13), pages 1-18, June.
    28. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    29. Cristina S. Polo López & Floriana Troia & Francesco Nocera, 2021. "Photovoltaic BIPV Systems and Architectural Heritage: New Balance between Conservation and Transformation. An Assessment Method for Heritage Values Compatibility and Energy Benefits of Interventions," Sustainability, MDPI, vol. 13(9), pages 1-31, May.
    30. Rouani, Lahcene & Harkat, Mohamed Faouzi & Kouadri, Abdelmalek & Mekhilef, Saad, 2021. "Shading fault detection in a grid-connected PV system using vertices principal component analysis," Renewable Energy, Elsevier, vol. 164(C), pages 1527-1539.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sohani, Ali & Cornaro, Cristina & Shahverdian, Mohammad Hassan & Pierro, Marco & Moser, David & Nižetić, Sandro & Karimi, Nader & Li, Larry K.B. & Doranehgard, Mohammad Hossein, 2023. "Building integrated photovoltaic/thermal technologies in Middle Eastern and North African countries: Current trends and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Fabrizio M. Amoruso & Thorsten Schuetze, 2023. "Carbon Life Cycle Assessment and Costing of Building Integrated Photovoltaic Systems for Deep Low-Carbon Renovation," Sustainability, MDPI, vol. 15(12), pages 1-33, June.
    3. Maturo, Anthony & Buonomano, Annamaria & Athienitis, Andreas, 2022. "Design for energy flexibility in smart buildings through solar based and thermal storage systems: Modelling, simulation and control for the system optimization," Energy, Elsevier, vol. 260(C).
    4. Jahangir Hossain & Aida. F. A. Kadir & Ainain. N. Hanafi & Hussain Shareef & Tamer Khatib & Kyairul. A. Baharin & Mohamad. F. Sulaima, 2023. "A Review on Optimal Energy Management in Commercial Buildings," Energies, MDPI, vol. 16(4), pages 1-40, February.
    5. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    6. Arias-Rosales, Andrés & LeDuc, Philip R., 2023. "Urban solar harvesting: The importance of diffuse shadows in complex environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    7. Assoa, Ya Brigitte & Valencia-Caballero, Daniel & Rico, Elena & Del Caño, Teodosio & Furtado, Joao Victor, 2023. "Performance of a large size photovoltaic module for façade integration," Renewable Energy, Elsevier, vol. 211(C), pages 903-917.
    8. Jingyu Cao & Wei Wu & Mingke Hu & Yunfeng Wang, 2023. "Green Building Technologies Targeting Carbon Neutrality," Energies, MDPI, vol. 16(2), pages 1-3, January.
    9. Mohammad Hassan Shahverdian & Saba Sedayevatan & Sajjad Latif Damavandi & Ali Sohani & Hoseyn Sayyaadi, 2022. "A Road Map to Detect the Foremost 3E Potential Areas for Installation of PV Façade Technology Using Multi-Criteria Decision Making," Sustainability, MDPI, vol. 14(23), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    2. Weerasinghe, R.P.N.P. & Yang, R.J. & Wakefield, R. & Too, E. & Le, T. & Corkish, R. & Chen, S. & Wang, C., 2021. "Economic viability of building integrated photovoltaics: A review of forty-five (45) non-domestic buildings in twelve (12) western countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Giulio Mangherini & Valentina Diolaiti & Paolo Bernardoni & Alfredo Andreoli & Donato Vincenzi, 2023. "Review of Façade Photovoltaic Solutions for Less Energy-Hungry Buildings," Energies, MDPI, vol. 16(19), pages 1-35, September.
    4. Simon Ravyts & Mauricio Dalla Vecchia & Giel Van den Broeck & Johan Driesen, 2019. "Review on Building-Integrated Photovoltaics Electrical System Requirements and Module-Integrated Converter Recommendations," Energies, MDPI, vol. 12(8), pages 1-21, April.
    5. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    6. Li, Meng & Ma, Tao & Liu, Jiaying & Li, Huanhuan & Xu, Yaling & Gu, Wenbo & Shen, Lu, 2019. "Numerical and experimental investigation of precast concrete facade integrated with solar photovoltaic panels," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Vesna Kosorić & Siu-Kit Lau & Abel Tablada & Monika Bieri & André M. Nobre, 2021. "A Holistic Strategy for Successful Photovoltaic (PV) Implementation into Singapore’s Built Environment," Sustainability, MDPI, vol. 13(11), pages 1-35, June.
    8. Liu, Zhengguang & Guo, Zhiling & Chen, Qi & Song, Chenchen & Shang, Wenlong & Yuan, Meng & Zhang, Haoran, 2023. "A review of data-driven smart building-integrated photovoltaic systems: Challenges and objectives," Energy, Elsevier, vol. 263(PE).
    9. Khencha Khadidja & Biara Ratiba Wided & Belmili Hocine, 2020. "Techno-economic study of BIPV in typical Sahara region in Algeria," Journal of Economic Development, Environment and People, Alliance of Central-Eastern European Universities, vol. 9(1), pages 27-57, September.
    10. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    11. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    12. Hassan Gholami & Harald Nils Røstvik & Koen Steemers, 2021. "The Contribution of Building-Integrated Photovoltaics (BIPV) to the Concept of Nearly Zero-Energy Cities in Europe: Potential and Challenges Ahead," Energies, MDPI, vol. 14(19), pages 1-22, September.
    13. Goe, Michele & Gaustad, Gabrielle, 2014. "Strengthening the case for recycling photovoltaics: An energy payback analysis," Applied Energy, Elsevier, vol. 120(C), pages 41-48.
    14. Menoufi, Karim & Chemisana, Daniel & Rosell, Joan I., 2013. "Life Cycle Assessment of a Building Integrated Concentrated Photovoltaic scheme," Applied Energy, Elsevier, vol. 111(C), pages 505-514.
    15. Gonçalves, Juliana E. & van Hooff, Twan & Saelens, Dirk, 2021. "Simulating building integrated photovoltaic facades: Comparison to experimental data and evaluation of modelling complexity," Applied Energy, Elsevier, vol. 281(C).
    16. Yadav, Somil & Panda, S.K. & Hachem-Vermette, Caroline, 2020. "Method to improve performance of building integrated photovoltaic thermal system having optimum tilt and facing directions," Applied Energy, Elsevier, vol. 266(C).
    17. Yiqing Dai & Yu Bai, 2020. "Performance Improvement for Building Integrated Photovoltaics in Practice: A Review," Energies, MDPI, vol. 14(1), pages 1-22, December.
    18. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    19. Chang, Ruidong & Cao, Yuan & Lu, Yujie & Shabunko, Veronika, 2019. "Should BIPV technologies be empowered by innovation policy mix to facilitate energy transitions? - Revealing stakeholders' different perspectives using Q methodology," Energy Policy, Elsevier, vol. 129(C), pages 307-318.
    20. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:156:y:2022:i:c:s1364032121012119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.