IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v149y2021ics1364032121006171.html
   My bibliography  Save this article

Methane production test of the anaerobic sludge from rice parboiling industries with the addition of biodiesel glycerol from rice bran oil in Brazil

Author

Listed:
  • Lourenço, Vitor Alves
  • Nadaleti, Willian Cézar
  • Vieira, Bruno Müller
  • Chua, Hui

Abstract

Experimental research and energy plans show that the residues of rice parboiling industries in Brazil have the energy potential to promote the sector's self-sufficiency. The studies investigate the production of biogas from the anaerobic digestion of wastewater and its anaerobic sludge. There are no reports of the investigation to optimize such production by adding glycerol. This addition can increase methane production; however, high proportions of crude glycerol can cause inhibition of microbial activity. Considering that anaerobic sludge acts as inoculum in the digestion of effluent in treatment plants, the main goal of this study was to test the feasibility of adding crude glycerol from the production of rice bran biodiesel in anaerobic digestion with sludge. The reactors operated with different proportions of crude glycerol (0%, 1%, 2%, and 3%). The highest methane production occurred in the system with 1% glycerol, 945.23 ± 5.34 mL, in 168 h – a production 539.45% higher when compared to the system without glycerol. Higher doses of glycerol resulted in fast interruption of methanogenic activity. The study determined that the addition of 1% glycerol was able to prolong the duration of the stationary phase of methanogenic microorganisms. Thus, the high energy potential of the sector can be significantly increased with the addition of the biodiesel by-product in anaerobic digestion. Such a possibility could guarantee greater security, energy autonomy, the possibility of generating revenue from the sale of surplus methane or electricity, and an environmentally proper destination for crude glycerol.

Suggested Citation

  • Lourenço, Vitor Alves & Nadaleti, Willian Cézar & Vieira, Bruno Müller & Chua, Hui, 2021. "Methane production test of the anaerobic sludge from rice parboiling industries with the addition of biodiesel glycerol from rice bran oil in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
  • Handle: RePEc:eee:rensus:v:149:y:2021:i:c:s1364032121006171
    DOI: 10.1016/j.rser.2021.111331
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121006171
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111331?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nadaleti, Willian Cézar, 2019. "Utilization of residues from rice parboiling industries in southern Brazil for biogas and hydrogen-syngas generation: Heat, electricity and energy planning," Renewable Energy, Elsevier, vol. 131(C), pages 55-72.
    2. Dreidy, Mohammad & Mokhlis, H. & Mekhilef, Saad, 2017. "Inertia response and frequency control techniques for renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 144-155.
    3. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Jeon, Jong-Min & Kumar, Gopalakrishnan & Yang, Yung-Hun, 2019. "Carbon dioxide capture and bioenergy production using biological system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 143-158.
    4. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    5. Srinuanpan, Sirasit & Cheirsilp, Benjamas & Prasertsan, Poonsuk, 2018. "Effective biogas upgrading and production of biodiesel feedstocks by strategic cultivation of oleaginous microalgae," Energy, Elsevier, vol. 148(C), pages 766-774.
    6. Singh, S.P. & Singh, Dipti, 2010. "Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 200-216, January.
    7. Li, Yebo & Park, Stephen Y. & Zhu, Jiying, 2011. "Solid-state anaerobic digestion for methane production from organic waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 821-826, January.
    8. Nadaleti, Willian Cézar & Przybyla, Grzegorz, 2018. "Emissions and performance of a spark-ignition gas engine generator operating with hydrogen-rich syngas, methane and biogas blends for application in southern Brazilian rice industries," Energy, Elsevier, vol. 154(C), pages 38-51.
    9. Meneses-Reyes, José Carlos & Hernández-Eugenio, Guadalupe & Huber, David H. & Balagurusamy, Nagamani & Espinosa-Solares, Teodoro, 2018. "Oil-extracted Chlorella vulgaris biomass and glycerol bioconversion to methane via continuous anaerobic co-digestion with chicken litter," Renewable Energy, Elsevier, vol. 128(PA), pages 223-229.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lourenço, Vitor Alves & Nadaleti, Willian Cézar & Vieira, Bruno Müller & Li, Hu, 2021. "Investigation of ethyl biodiesel via transesterification of rice bran oil: bioenergy from residual biomass in Pelotas, Rio Grande do Sul - Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. de Castro, Thiago Morais & Arantes, Eudes José & de Mendonça Costa, Mônica Sarolli Silva & Gotardo, Jackeline Tatiane & Passig, Fernando Hermes & de Carvalho, Karina Querne & Gomes, Simone Damasceno, 2021. "Anaerobic co-digestion of industrial waste landfill leachate and glycerin in a continuous anaerobic bioreactor with a fixed-structured bed (ABFSB): Effects of volumetric organic loading rate and alkal," Renewable Energy, Elsevier, vol. 164(C), pages 1436-1446.
    3. Siswo Sumardiono & Gebyar Adisukmo & Muthia Hanif & Budiyono Budiyono & Heri Cahyono, 2021. "Effects of Pretreatment and Ratio of Solid Sago Waste to Rumen on Biogas Production through Solid-State Anaerobic Digestion," Sustainability, MDPI, vol. 13(13), pages 1-11, July.
    4. Simioni, Taysnara & Agustini, Caroline Borges & Dettmer, Aline & Gutterres, Mariliz, 2022. "Enhancement of biogas production by anaerobic co-digestion of leather waste with raw and pretreated wheat straw," Energy, Elsevier, vol. 253(C).
    5. Chen, Jiaxin & Li, Ji & Dong, Wenyi & Zhang, Xiaolei & Tyagi, Rajeshwar D. & Drogui, Patrick & Surampalli, Rao Y., 2018. "The potential of microalgae in biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 336-346.
    6. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    7. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    8. Wang, Zhongzhong & Hu, Yuansheng & Wang, Shun & Wu, Guangxue & Zhan, Xinmin, 2023. "A critical review on dry anaerobic digestion of organic waste: Characteristics, operational conditions, and improvement strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    9. Bipasyana Dhungana & Sunil Prasad Lohani & Michael Marsolek, 2022. "Anaerobic Co-Digestion of Food Waste with Livestock Manure at Ambient Temperature: A Biogas Based Circular Economy and Sustainable Development Goals," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    10. Gómez-Marín, N. & Bridgwater, A.V., 2021. "Mapping bioenergy stakeholders: A systematic and scientometric review of capabilities and expertise in bioenergy research in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Bharathiraja, B. & Sudharsana, T. & Jayamuthunagai, J. & Praveenkumar, R. & Chozhavendhan, S. & Iyyappan, J., 2018. "Biogas production – A review on composition, fuel properties, feed stock and principles of anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 570-582.
    12. Anahita Rabii & Saad Aldin & Yaser Dahman & Elsayed Elbeshbishy, 2019. "A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration," Energies, MDPI, vol. 12(6), pages 1-25, March.
    13. Rouches, E. & Herpoël-Gimbert, I. & Steyer, J.P. & Carrere, H., 2016. "Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 179-198.
    14. Meneses-Quelal Orlando & Velázquez-Martí Borja, 2020. "Pretreatment of Animal Manure Biomass to Improve Biogas Production: A Review," Energies, MDPI, vol. 13(14), pages 1-28, July.
    15. Oh Kyung Choi & Zachary Hendren & Ki Young Park & Jae-Kon Kim & Jo Yong Park & Ahjeong Son & Jae Woo Lee, 2019. "Characterization and Recovery of In Situ Transesterifiable Lipids (TLs) as Potential Biofuel Feedstock from Sewage Sludge Obtained from Various Sewage Treatment Plants (STPs)," Energies, MDPI, vol. 12(20), pages 1-12, October.
    16. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2013. "Combustion performance and emission characteristics study of pine oil in a diesel engine," Energy, Elsevier, vol. 57(C), pages 344-351.
    17. Yang, Shunchang & Liu, Yikan & Wu, Na & Zhang, Yingxiu & Svoronos, Spyros & Pullammanappallil, Pratap, 2019. "Low-cost, Arduino-based, portable device for measurement of methane composition in biogas," Renewable Energy, Elsevier, vol. 138(C), pages 224-229.
    18. Arshad, Muhammad & Bano, Ijaz & Khan, Nasrullah & Shahzad, Mirza Imran & Younus, Muhammad & Abbas, Mazhar & Iqbal, Munawar, 2018. "Electricity generation from biogas of poultry waste: An assessment of potential and feasibility in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1241-1246.
    19. Subramonia Pillai, N. & Kannan, P. Seeni & Vettivel, S.C. & Suresh, S., 2017. "Optimization of transesterification of biodiesel using green catalyst derived from Albizia Lebbeck Pods by mixture design," Renewable Energy, Elsevier, vol. 104(C), pages 185-196.
    20. Pablo González-Inostroza & Claudia Rahmann & Ricardo Álvarez & Jannik Haas & Wolfgang Nowak & Christian Rehtanz, 2021. "The Role of Fast Frequency Response of Energy Storage Systems and Renewables for Ensuring Frequency Stability in Future Low-Inertia Power Systems," Sustainability, MDPI, vol. 13(10), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:149:y:2021:i:c:s1364032121006171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.