IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v137y2021ics1364032120308571.html
   My bibliography  Save this article

A review on liquid air energy storage: History, state of the art and recent developments

Author

Listed:
  • Borri, Emiliano
  • Tafone, Alessio
  • Romagnoli, Alessandro
  • Comodi, Gabriele

Abstract

Liquid air energy storage (LAES) represents one of the main alternatives to large-scale electrical energy storage solutions from medium to long-term period such as compressed air and pumped hydro energy storage. Indeed, characterized by one of the highest volumetric energy density (≈200 kWh/m3), LAES can overcome the geographical constraints from which the actual mature large-scale electrical energy storage technologies suffer from. LAES is based on the concept that air can be liquefied, stored, and used at a later time to produce electricity. Although the liquefaction of air has been studied for over a century, the first concept of using cryogenics as energy storage was proposed for the first time in 1977 and rediscovered only in recent times. Indeed, the need for alternative energy vectors in the energy system attracted many researchers to discover the potential of the use of cryogenic media. This has brought the realization of a first LAES pilot plant and a growing number of studies regarding LAES systems. The main drawback of this technology is the low round-trip efficiency that can be estimated around 50–60% for large-scale systems. However, due to its thermo-mechanical nature, LAES is a versatile energy storage concept that can be easily integrated with other thermal energy systems or energy sources in a wide range of applications. Most of the literature published is based on thermodynamic and economic analysis focusing on different LAES configurations. This paper provides a collection of the papers published on LAES and it classifies the various studies conducted in different categories. Future perspectives show that hybrid LAES solutions with efficient design of the waste energy recovery sections are the most promising configuration to enhance the techno-economic performance of the stand-alone system.

Suggested Citation

  • Borri, Emiliano & Tafone, Alessio & Romagnoli, Alessandro & Comodi, Gabriele, 2021. "A review on liquid air energy storage: History, state of the art and recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:rensus:v:137:y:2021:i:c:s1364032120308571
    DOI: 10.1016/j.rser.2020.110572
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120308571
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110572?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grazzini, Giuseppe & Milazzo, Adriano, 2008. "Thermodynamic analysis of CAES/TES systems for renewable energy plants," Renewable Energy, Elsevier, vol. 33(9), pages 1998-2006.
    2. Tafone, Alessio & Ding, Yulong & Li, Yongliang & Xie, Chunping & Romagnoli, Alessandro, 2020. "Levelised Cost of Storage (LCOS) analysis of liquid air energy storage system integrated with Organic Rankine Cycle," Energy, Elsevier, vol. 198(C).
    3. Tafone, Alessio & Romagnoli, Alessandro & Borri, Emiliano & Comodi, Gabriele, 2019. "New parametric performance maps for a novel sizing and selection methodology of a Liquid Air Energy Storage system," Applied Energy, Elsevier, vol. 250(C), pages 1641-1656.
    4. Antonelli, Marco & Barsali, Stefano & Desideri, Umberto & Giglioli, Romano & Paganucci, Fabrizio & Pasini, Gianluca, 2017. "Liquid air energy storage: Potential and challenges of hybrid power plants," Applied Energy, Elsevier, vol. 194(C), pages 522-529.
    5. Bernagozzi, Marco & Panesar, Angad S. & Morgan, Robert, 2019. "Molten salt selection methodology for medium temperature liquid air energy storage application," Applied Energy, Elsevier, vol. 248(C), pages 500-511.
    6. Kantharaj, Bharath & Garvey, Seamus & Pimm, Andrew, 2015. "Compressed air energy storage with liquid air capacity extension," Applied Energy, Elsevier, vol. 157(C), pages 152-164.
    7. Zhang, Tong & Chen, Laijun & Zhang, Xuelin & Mei, Shengwei & Xue, Xiaodai & Zhou, Yuan, 2018. "Thermodynamic analysis of a novel hybrid liquid air energy storage system based on the utilization of LNG cold energy," Energy, Elsevier, vol. 155(C), pages 641-650.
    8. Morgan, Robert & Nelmes, Stuart & Gibson, Emma & Brett, Gareth, 2015. "Liquid air energy storage – Analysis and first results from a pilot scale demonstration plant," Applied Energy, Elsevier, vol. 137(C), pages 845-853.
    9. Georgiou, Solomos & Shah, Nilay & Markides, Christos N., 2018. "A thermo-economic analysis and comparison of pumped-thermal and liquid-air electricity storage systems," Applied Energy, Elsevier, vol. 226(C), pages 1119-1133.
    10. Budt, Marcus & Wolf, Daniel & Span, Roland & Yan, Jinyue, 2016. "A review on compressed air energy storage: Basic principles, past milestones and recent developments," Applied Energy, Elsevier, vol. 170(C), pages 250-268.
    11. Peng, Xiaodong & She, Xiaohui & Cong, Lin & Zhang, Tongtong & Li, Chuan & Li, Yongliang & Wang, Li & Tong, Lige & Ding, Yulong, 2018. "Thermodynamic study on the effect of cold and heat recovery on performance of liquid air energy storage," Applied Energy, Elsevier, vol. 221(C), pages 86-99.
    12. Lin, Boqiang & Wu, Wei & Bai, Mengqi & Xie, Chunping & Radcliffe, Jonathan, 2019. "Liquid air energy storage: Price arbitrage operations and sizing optimization in the GB real-time electricity market," Energy Economics, Elsevier, vol. 78(C), pages 647-655.
    13. Al-Zareer, Maan & Dincer, Ibrahim & Rosen, Marc A., 2017. "Analysis and assessment of novel liquid air energy storage system with district heating and cooling capabilities," Energy, Elsevier, vol. 141(C), pages 792-802.
    14. Peng, Xiaodong & She, Xiaohui & Li, Chuan & Luo, Yimo & Zhang, Tongtong & Li, Yongliang & Ding, Yulong, 2019. "Liquid air energy storage flexibly coupled with LNG regasification for improving air liquefaction," Applied Energy, Elsevier, vol. 250(C), pages 1190-1201.
    15. Guizzi, Giuseppe Leo & Manno, Michele & Tolomei, Ludovica Maria & Vitali, Ruggero Maria, 2015. "Thermodynamic analysis of a liquid air energy storage system," Energy, Elsevier, vol. 93(P2), pages 1639-1647.
    16. She, Xiaohui & Peng, Xiaodong & Nie, Binjian & Leng, Guanghui & Zhang, Xiaosong & Weng, Likui & Tong, Lige & Zheng, Lifang & Wang, Li & Ding, Yulong, 2017. "Enhancement of round trip efficiency of liquid air energy storage through effective utilization of heat of compression," Applied Energy, Elsevier, vol. 206(C), pages 1632-1642.
    17. Li, Yongliang & Cao, Hui & Wang, Shuhao & Jin, Yi & Li, Dacheng & Wang, Xiang & Ding, Yulong, 2014. "Load shifting of nuclear power plants using cryogenic energy storage technology," Applied Energy, Elsevier, vol. 113(C), pages 1710-1716.
    18. Vecchi, Andrea & Li, Yongliang & Mancarella, Pierluigi & Sciacovelli, Adriano, 2020. "Integrated techno-economic assessment of Liquid Air Energy Storage (LAES) under off-design conditions: Links between provision of market services and thermodynamic performance," Applied Energy, Elsevier, vol. 262(C).
    19. Hamdy, Sarah & Morosuk, Tatiana & Tsatsaronis, George, 2019. "Exergoeconomic optimization of an adiabatic cryogenics-based energy storage system," Energy, Elsevier, vol. 183(C), pages 812-824.
    20. Hamdy, Sarah & Morosuk, Tatiana & Tsatsaronis, George, 2017. "Cryogenics-based energy storage: Evaluation of cold exergy recovery cycles," Energy, Elsevier, vol. 138(C), pages 1069-1080.
    21. Hüttermann, Lars & Span, Roland, 2019. "Influence of the heat capacity of the storage material on the efficiency of thermal regenerators in liquid air energy storage systems," Energy, Elsevier, vol. 174(C), pages 236-245.
    22. Comodi, Gabriele & Carducci, Francesco & Sze, Jia Yin & Balamurugan, Nagarajan & Romagnoli, Alessandro, 2017. "Storing energy for cooling demand management in tropical climates: A techno-economic comparison between different energy storage technologies," Energy, Elsevier, vol. 121(C), pages 676-694.
    23. Krawczyk, Piotr & Szabłowski, Łukasz & Karellas, Sotirios & Kakaras, Emmanuel & Badyda, Krzysztof, 2018. "Comparative thermodynamic analysis of compressed air and liquid air energy storage systems," Energy, Elsevier, vol. 142(C), pages 46-54.
    24. Tafone, Alessio & Borri, Emiliano & Comodi, Gabriele & van den Broek, Martijn & Romagnoli, Alessandro, 2018. "Liquid Air Energy Storage performance enhancement by means of Organic Rankine Cycle and Absorption Chiller," Applied Energy, Elsevier, vol. 228(C), pages 1810-1821.
    25. Sciacovelli, A. & Vecchi, A. & Ding, Y., 2017. "Liquid air energy storage (LAES) with packed bed cold thermal storage – From component to system level performance through dynamic modelling," Applied Energy, Elsevier, vol. 190(C), pages 84-98.
    26. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    27. Xie, Chunping & Hong, Yan & Ding, Yulong & Li, Yongliang & Radcliffe, Jonathan, 2018. "An economic feasibility assessment of decoupled energy storage in the UK: With liquid air energy storage as a case study," Applied Energy, Elsevier, vol. 225(C), pages 244-257.
    28. Rehman, Ali & Qyyum, Muhammad Abdul & Qadeer, Kinza & Zakir, Fatima & Ding, Yulong & Lee, Moonyong & Wang, Li, 2020. "Integrated biomethane liquefaction using exergy from the discharging end of a liquid air energy storage system," Applied Energy, Elsevier, vol. 260(C).
    29. Barsali, Stefano & Ciambellotti, Alessio & Giglioli, Romano & Paganucci, Fabrizio & Pasini, Gianluca, 2018. "Hybrid power plant for energy storage and peak shaving by liquefied oxygen and natural gas," Applied Energy, Elsevier, vol. 228(C), pages 33-41.
    30. Lee, Inkyu & You, Fengqi, 2019. "Systems design and analysis of liquid air energy storage from liquefied natural gas cold energy," Applied Energy, Elsevier, vol. 242(C), pages 168-180.
    31. Georgiou, Solomos & Aunedi, Marko & Strbac, Goran & Markides, Christos N., 2020. "On the value of liquid-air and pumped-thermal electricity storage systems in low-carbon electricity systems," Energy, Elsevier, vol. 193(C).
    32. Kim, Juwon & Noh, Yeelyong & Chang, Daejun, 2018. "Storage system for distributed-energy generation using liquid air combined with liquefied natural gas," Applied Energy, Elsevier, vol. 212(C), pages 1417-1432.
    33. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    34. Abdo, Rodrigo F. & Pedro, Hugo T.C. & Koury, Ricardo N.N. & Machado, Luiz & Coimbra, Carlos F.M. & Porto, Matheus P., 2015. "Performance evaluation of various cryogenic energy storage systems," Energy, Elsevier, vol. 90(P1), pages 1024-1032.
    35. Legrand, Mathieu & Rodríguez-Antón, Luis Miguel & Martinez-Arevalo, Carmen & Gutiérrez-Martín, Fernando, 2019. "Integration of liquid air energy storage into the spanish power grid," Energy, Elsevier, vol. 187(C).
    36. Peng, Hao & Shan, Xuekun & Yang, Yu & Ling, Xiang, 2018. "A study on performance of a liquid air energy storage system with packed bed units," Applied Energy, Elsevier, vol. 211(C), pages 126-135.
    37. Qi, Meng & Park, Jinwoo & Kim, Jeongdong & Lee, Inkyu & Moon, Il, 2020. "Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation," Applied Energy, Elsevier, vol. 269(C).
    38. She, Xiaohui & Zhang, Tongtong & Cong, Lin & Peng, Xiaodong & Li, Chuan & Luo, Yimo & Ding, Yulong, 2019. "Flexible integration of liquid air energy storage with liquefied natural gas regasification for power generation enhancement," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    39. Lee, Inkyu & Park, Jinwoo & Moon, Il, 2017. "Conceptual design and exergy analysis of combined cryogenic energy storage and LNG regasification processes: Cold and power integration," Energy, Elsevier, vol. 140(P1), pages 106-115.
    40. Kalavani, Farshad & Mohammadi-Ivatloo, Behnam & Zare, Kazem, 2019. "Optimal stochastic scheduling of cryogenic energy storage with wind power in the presence of a demand response program," Renewable Energy, Elsevier, vol. 130(C), pages 268-280.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Mohammad Rajabdorri & Lukas Sigrist & Enrique Lobato, 2022. "Liquid Air Energy Storage Model for Scheduling Purposes in Island Power Systems," Energies, MDPI, vol. 15(19), pages 1-13, September.
    3. Mousavi, Shadi Bashiri & Ahmadi, Pouria & Adib, Mahdieh & Izadi, Ali, 2023. "Techno-economic assessment of an efficient liquid air energy storage with ejector refrigeration cycle for peak shaving of renewable energies," Renewable Energy, Elsevier, vol. 214(C), pages 96-113.
    4. Kong, Fulin & Liu, Yuxin & Shen, Minghai & Tong, Lige & Yin, Shaowu & Wang, Li & Ding, Yulong, 2023. "A novel economic scheduling of multi-product deterministic demand for co-production air separation system with liquid air energy storage," Renewable Energy, Elsevier, vol. 209(C), pages 533-545.
    5. Tafone, Alessio & Borri, Emiliano & Cabeza, Luisa F. & Romagnoli, Alessandro, 2021. "Innovative cryogenic Phase Change Material (PCM) based cold thermal energy storage for Liquid Air Energy Storage (LAES) – Numerical dynamic modelling and experimental study of a packed bed unit," Applied Energy, Elsevier, vol. 301(C).
    6. Gandhi, Akhilesh & Zantye, Manali S. & Faruque Hasan, M.M., 2022. "Cryogenic energy storage: Standalone design, rigorous optimization and techno-economic analysis," Applied Energy, Elsevier, vol. 322(C).
    7. Muhammad Shahzad Nazir & Ahmed N. Abdalla & Ahmed Sayed M. Metwally & Muhammad Imran & Patrizia Bocchetta & Muhammad Sufyan Javed, 2022. "Cryogenic-Energy-Storage-Based Optimized Green Growth of an Integrated and Sustainable Energy System," Sustainability, MDPI, vol. 14(9), pages 1-18, April.
    8. He, Xin & Li, ChengChen & Wang, Huanran, 2022. "Thermodynamics analysis of a combined cooling, heating and power system integrating compressed air energy storage and gas-steam combined cycle," Energy, Elsevier, vol. 260(C).
    9. Biber, Albert & Wieland, Christoph & Spliethoff, Hartmut, 2022. "Economic analysis of energy storages integrated into combined-cycle power plants," Energy Policy, Elsevier, vol. 170(C).
    10. Xu, Wenpan & Zhao, Pan & Gou, Feifei & Liu, Aijie & Wu, Wenze & Wang, Jiangfeng, 2022. "Thermo-economic analysis of a combined cooling, heating and power system based on self-evaporating liquid carbon dioxide energy storage," Applied Energy, Elsevier, vol. 326(C).
    11. Ding, Xingqi & Zhou, Yufei & Duan, Liqiang & Li, Da & Zheng, Nan, 2023. "Comprehensive performance investigation of a novel solar-assisted liquid air energy storage system with different operating modes in different seasons," Energy, Elsevier, vol. 284(C).
    12. Emiliano Borri & Alessio Tafone & Gabriele Comodi & Alessandro Romagnoli & Luisa F. Cabeza, 2022. "Compressed Air Energy Storage—An Overview of Research Trends and Gaps through a Bibliometric Analysis," Energies, MDPI, vol. 15(20), pages 1-21, October.
    13. Qi, Meng & Vo, Dat Nguyen & Yu, Haoshui & Shu, Chi-Min & Cui, Chengtian & Liu, Yi & Park, Jinwoo & Moon, Il, 2023. "Strategies for flexible operation of power-to-X processes coupled with renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    14. Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
    15. Qi, Meng & Kim, Minsu & Dat Vo, Nguyen & Yin, Liang & Liu, Yi & Park, Jinwoo & Moon, Il, 2022. "Proposal and surrogate-based cost-optimal design of an innovative green ammonia and electricity co-production system via liquid air energy storage," Applied Energy, Elsevier, vol. 314(C).
    16. Sandro Hiller & Christian Hartmann & Babette Hebenstreit & Stefan Arzbacher, 2022. "Solidified-Air Energy Storage: Conceptualization and Thermodynamic Analysis," Energies, MDPI, vol. 15(6), pages 1-14, March.
    17. He, Xin & Wang, Huanran & Li, Ruixiong & Sun, Hao & Chen, Hao & Li, ChengChen & Ge, Gangqiang & Tao, Feiyue, 2022. "Thermo-conversion of a physical energy storage system with high-energy density: Combination of thermal energy storage and gas-steam combined cycle," Energy, Elsevier, vol. 239(PE).
    18. Simona Andreea Apostu & Mirela Panait & Làszló Vasa & Constanta Mihaescu & Zbyslaw Dobrowolski, 2022. "NFTs and Cryptocurrencies—The Metamorphosis of the Economy under the Sign of Blockchain: A Time Series Approach," Mathematics, MDPI, vol. 10(17), pages 1-13, September.
    19. Tafone, Alessio & Romagnoli, Alessandro, 2023. "A novel liquid air energy storage system integrated with a cascaded latent heat cold thermal energy storage," Energy, Elsevier, vol. 281(C).
    20. Pereira, André Alves & Pereira, Miguel Alves, 2023. "Energy storage strategy analysis based on the Choquet multi-criteria preference aggregation model: The Portuguese case," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    21. Fan, Xiaoyu & Guo, Luna & Ji, Wei & Chen, Liubiao & Wang, Junjie, 2023. "Liquid air energy storage system based on fluidized bed heat transfer," Renewable Energy, Elsevier, vol. 215(C).
    22. Mylena Vieira Pinto Menezes & Icaro Figueiredo Vilasboas & Julio Augusto Mendes da Silva, 2022. "Liquid Air Energy Storage System (LAES) Assisted by Cryogenic Air Rankine Cycle (ARC)," Energies, MDPI, vol. 15(8), pages 1-16, April.
    23. Dzido, Aleksandra & Wołowicz, Marcin & Krawczyk, Piotr, 2022. "Transcritical carbon dioxide cycle as a way to improve the efficiency of a Liquid Air Energy Storage system," Renewable Energy, Elsevier, vol. 196(C), pages 1385-1391.
    24. Samuel Matthew G. Dumlao & Keiichi N. Ishihara, 2021. "Dynamic Cost-Optimal Assessment of Complementary Diurnal Electricity Storage Capacity in High PV Penetration Grid," Energies, MDPI, vol. 14(15), pages 1-23, July.
    25. Matteo Marchionni & Roberto Cipollone, 2023. "Liquid CO 2 and Liquid Air Energy Storage Systems: A Thermodynamic Analysis," Energies, MDPI, vol. 16(13), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. O'Callaghan, O. & Donnellan, P., 2021. "Liquid air energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    3. Ayah Marwan Rabi & Jovana Radulovic & James M. Buick, 2023. "Comprehensive Review of Liquid Air Energy Storage (LAES) Technologies," Energies, MDPI, vol. 16(17), pages 1-19, August.
    4. Tafone, Alessio & Romagnoli, Alessandro & Borri, Emiliano & Comodi, Gabriele, 2019. "New parametric performance maps for a novel sizing and selection methodology of a Liquid Air Energy Storage system," Applied Energy, Elsevier, vol. 250(C), pages 1641-1656.
    5. Xue, Xiao-Dai & Zhang, Tong & Zhang, Xue-Lin & Ma, Lin-Rui & He, Ya-Ling & Li, Ming-Jia & Mei, Sheng-Wei, 2021. "Performance evaluation and exergy analysis of a novel combined cooling, heating and power (CCHP) system based on liquid air energy storage," Energy, Elsevier, vol. 222(C).
    6. She, Xiaohui & Zhang, Tongtong & Cong, Lin & Peng, Xiaodong & Li, Chuan & Luo, Yimo & Ding, Yulong, 2019. "Flexible integration of liquid air energy storage with liquefied natural gas regasification for power generation enhancement," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Peng, Xiaodong & She, Xiaohui & Li, Chuan & Luo, Yimo & Zhang, Tongtong & Li, Yongliang & Ding, Yulong, 2019. "Liquid air energy storage flexibly coupled with LNG regasification for improving air liquefaction," Applied Energy, Elsevier, vol. 250(C), pages 1190-1201.
    8. Mylena Vieira Pinto Menezes & Icaro Figueiredo Vilasboas & Julio Augusto Mendes da Silva, 2022. "Liquid Air Energy Storage System (LAES) Assisted by Cryogenic Air Rankine Cycle (ARC)," Energies, MDPI, vol. 15(8), pages 1-16, April.
    9. Legrand, Mathieu & Labajo-Hurtado, Raúl & Rodríguez-Antón, Luis Miguel & Doce, Yolanda, 2022. "Price arbitrage optimization of a photovoltaic power plant with liquid air energy storage. Implementation to the Spanish case," Energy, Elsevier, vol. 239(PA).
    10. Chen, Jiaxiang & Yang, Luwei & An, Baolin & Hu, Jianying & Wang, Junjie, 2022. "Unsteady analysis of the cold energy storage heat exchanger in a liquid air energy storage system," Energy, Elsevier, vol. 242(C).
    11. Tafone, Alessio & Ding, Yulong & Li, Yongliang & Xie, Chunping & Romagnoli, Alessandro, 2020. "Levelised Cost of Storage (LCOS) analysis of liquid air energy storage system integrated with Organic Rankine Cycle," Energy, Elsevier, vol. 198(C).
    12. Park, Jinwoo & Cho, Seungsik & Qi, Meng & Noh, Wonjun & Lee, Inkyu & Moon, Il, 2021. "Liquid air energy storage coupled with liquefied natural gas cold energy: Focus on efficiency, energy capacity, and flexibility," Energy, Elsevier, vol. 216(C).
    13. Vecchi, Andrea & Li, Yongliang & Mancarella, Pierluigi & Sciacovelli, Adriano, 2020. "Integrated techno-economic assessment of Liquid Air Energy Storage (LAES) under off-design conditions: Links between provision of market services and thermodynamic performance," Applied Energy, Elsevier, vol. 262(C).
    14. Gandhi, Akhilesh & Zantye, Manali S. & Faruque Hasan, M.M., 2022. "Cryogenic energy storage: Standalone design, rigorous optimization and techno-economic analysis," Applied Energy, Elsevier, vol. 322(C).
    15. Wang, Chen & Zhang, Xiaosong & You, Zhanping & Zhang, Muxing & Huang, Shifang & She, Xiaohui, 2021. "The effect of air purification on liquid air energy storage – An analysis from molecular to systematic modelling," Applied Energy, Elsevier, vol. 300(C).
    16. Wang, Chen & Akkurt, Nevzat & Zhang, Xiaosong & Luo, Yimo & She, Xiaohui, 2020. "Techno-economic analyses of multi-functional liquid air energy storage for power generation, oxygen production and heating," Applied Energy, Elsevier, vol. 275(C).
    17. Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
    18. Vecchi, Andrea & Naughton, James & Li, Yongliang & Mancarella, Pierluigi & Sciacovelli, Adriano, 2020. "Multi-mode operation of a Liquid Air Energy Storage (LAES) plant providing energy arbitrage and reserve services – Analysis of optimal scheduling and sizing through MILP modelling with integrated ther," Energy, Elsevier, vol. 200(C).
    19. Mousavi, Shadi Bashiri & Ahmadi, Pouria & Adib, Mahdieh & Izadi, Ali, 2023. "Techno-economic assessment of an efficient liquid air energy storage with ejector refrigeration cycle for peak shaving of renewable energies," Renewable Energy, Elsevier, vol. 214(C), pages 96-113.
    20. Incer-Valverde, Jimena & Hamdy, Sarah & Morosuk, Tatiana & Tsatsaronis, George, 2021. "Improvement perspectives of cryogenics-based energy storage," Renewable Energy, Elsevier, vol. 169(C), pages 629-640.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:137:y:2021:i:c:s1364032120308571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.