IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v117y2020ics1364032119306938.html
   My bibliography  Save this article

Clean gaseous fuel application in diesel engine: A sustainable option for rural electrification in India

Author

Listed:
  • Das, S.
  • Kashyap, D.
  • Kalita, P.
  • Kulkarni, V.
  • Itaya, Y.

Abstract

Compression Ignition (CI) engine is used to generate power for various stationary applications in remote places due to the non-availability of centralised grid connectivity. The burning diesel in CI engine leads to fossil fuel depletion and environmental degradation. Hence, there is a huge demand of generating remote electricity by utilizing available renewable resources with the help of existing CI engines. In this paper biogas (BG) and producer gas (PG) based CI engine technology for remote electricity generation in India has been reviewed. The study is organised in two sections. The first section focused on conceptualizing the influence of these gaseous fuels in CI engine as secondary fuel under dual fuel (DF) mode with diesel/biodiesel as pilot fuel. The effect of various operating parameters on the performance, combustion and emission characteristics have been reviewed. It is evident from the study that induction of gaseous fuel declines the engine performance to some extent, however emission characteristics reported to be enhanced. However, changes in the operating conditions bring with immense scope in the improvement of the engine performance. The study develops a clear understanding on the possibilities of these gases to be used as a primary source for generating rural electricity. In the second section, a discussion on the implementation of such technologies in various rural localities of India considering the biomass potential of the country has been addressed. An exhaustive review is also carried out on various electricity generating units in India powered by BG and PG individually. The literature on use of combined BG and PG units for energy generation are limited and no suitable economic model has been developed considering these gases for rural power generation. This study provides a complete insight to every pros and cons associated with such power generating units and its socio-economic impacts on rural livelihood.

Suggested Citation

  • Das, S. & Kashyap, D. & Kalita, P. & Kulkarni, V. & Itaya, Y., 2020. "Clean gaseous fuel application in diesel engine: A sustainable option for rural electrification in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
  • Handle: RePEc:eee:rensus:v:117:y:2020:i:c:s1364032119306938
    DOI: 10.1016/j.rser.2019.109485
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119306938
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109485?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalsi, Sunmeet Singh & Subramanian, K.A., 2017. "Effect of simulated biogas on performance, combustion and emissions characteristics of a bio-diesel fueled diesel engine," Renewable Energy, Elsevier, vol. 106(C), pages 78-90.
    2. Ryu, Kyunghyun, 2013. "Effects of pilot injection timing on the combustion and emissions characteristics in a diesel engine using biodiesel–CNG dual fuel," Applied Energy, Elsevier, vol. 111(C), pages 721-730.
    3. Pinheiro, Giorgiana & Rendeiro, Gonçalo & Pinho, João & Macedo, Emanuel, 2012. "Sustainable management model for rural electrification: Case study based on biomass solid waste considering the Brazilian regulation policy," Renewable Energy, Elsevier, vol. 37(1), pages 379-386.
    4. Hernández, J.J. & Lapuerta, M. & Barba, J., 2015. "Effect of partial replacement of diesel or biodiesel with gas from biomass gasification in a diesel engine," Energy, Elsevier, vol. 89(C), pages 148-157.
    5. Banapurmath, N.R. & Tewari, P.G., 2009. "Comparative performance studies of a 4-stroke CI engine operated on dual fuel mode with producer gas and Honge oil and its methyl ester (HOME) with and without carburetor," Renewable Energy, Elsevier, vol. 34(4), pages 1009-1015.
    6. Ruiz, J.A. & Juárez, M.C. & Morales, M.P. & Muñoz, P. & Mendívil, M.A., 2013. "Biomass gasification for electricity generation: Review of current technology barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 174-183.
    7. Mohammed, Y.S. & Mokhtar, A.S. & Bashir, N. & Saidur, R., 2013. "An overview of agricultural biomass for decentralized rural energy in Ghana," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 15-25.
    8. Omer, Abdeen Mustafa, 2008. "Energy, environment and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2265-2300, December.
    9. Barik, Debabrata & Murugan, S., 2014. "Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogas–diesel in dual fuel mode," Energy, Elsevier, vol. 72(C), pages 760-771.
    10. Selim, Mohamed Y.E. & Radwan, M.S. & Saleh, H.E., 2008. "Improving the performance of dual fuel engines running on natural gas/LPG by using pilot fuel derived from jojoba seeds," Renewable Energy, Elsevier, vol. 33(6), pages 1173-1185.
    11. Yaliwal, V.S. & Banapurmath, N.R. & Gireesh, N.M. & Tewari, P.G., 2014. "Production and utilization of renewable and sustainable gaseous fuel for power generation applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 608-627.
    12. Qian, Yong & Sun, Shuzhou & Ju, Dehao & Shan, Xinxing & Lu, Xingcai, 2017. "Review of the state-of-the-art of biogas combustion mechanisms and applications in internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 50-58.
    13. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2014. "Hybrid renewable energy systems for off-grid electric power: Review of substantial issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 527-539.
    14. Kumar, Anil & Kumar, Nitin & Baredar, Prashant & Shukla, Ashish, 2015. "A review on biomass energy resources, potential, conversion and policy in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 530-539.
    15. Banapurmath, N.R. & Tewari, P.G. & Hosmath, R.S., 2008. "Experimental investigations of a four-stroke single cylinder direct injection diesel engine operated on dual fuel mode with producer gas as inducted fuel and Honge oil and its methyl ester (HOME) as i," Renewable Energy, Elsevier, vol. 33(9), pages 2007-2018.
    16. Martínez, Juan Daniel & Mahkamov, Khamid & Andrade, Rubenildo V. & Silva Lora, Electo E., 2012. "Syngas production in downdraft biomass gasifiers and its application using internal combustion engines," Renewable Energy, Elsevier, vol. 38(1), pages 1-9.
    17. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2013. "Status of renewable energy consumption and developmental challenges in Sub-Sahara Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 453-463.
    18. Bora, Bhaskor J. & Saha, Ujjwal K., 2016. "Experimental evaluation of a rice bran biodiesel – biogas run dual fuel diesel engine at varying compression ratios," Renewable Energy, Elsevier, vol. 87(P1), pages 782-790.
    19. Hiloidhari, Moonmoon & Das, Dhiman & Baruah, D.C., 2014. "Bioenergy potential from crop residue biomass in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 504-512.
    20. Arthur, Richard & Baidoo, Martina Francisca & Antwi, Edward, 2011. "Biogas as a potential renewable energy source: A Ghanaian case study," Renewable Energy, Elsevier, vol. 36(5), pages 1510-1516.
    21. Singh, R.N. & Singh, S.P. & Pathak, B.S., 2007. "Investigations on operation of CI engine using producer gas and rice bran oil in mixed fuel mode," Renewable Energy, Elsevier, vol. 32(9), pages 1565-1580.
    22. Liu, Jie & Yang, Fuyuan & Wang, Hewu & Ouyang, Minggao & Hao, Shougang, 2013. "Effects of pilot fuel quantity on the emissions characteristics of a CNG/diesel dual fuel engine with optimized pilot injection timing," Applied Energy, Elsevier, vol. 110(C), pages 201-206.
    23. Donateo, Teresa & Tornese, Federica & Laforgia, Domenico, 2013. "Computer-aided conversion of an engine from diesel to methane," Applied Energy, Elsevier, vol. 108(C), pages 8-23.
    24. Sahoo, B.B. & Sahoo, N. & Saha, U.K., 2009. "Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines--A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1151-1184, August.
    25. Banapurmath, N.R. & Tewari, P.G. & Yaliwal, V.S. & Kambalimath, Satish & Basavarajappa, Y.H., 2009. "Combustion characteristics of a 4-stroke CI engine operated on Honge oil, Neem and Rice Bran oils when directly injected and dual fuelled with producer gas induction," Renewable Energy, Elsevier, vol. 34(7), pages 1877-1884.
    26. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    27. Ravindranath, N.H. & Balachandra, P., 2009. "Sustainable bioenergy for India: Technical, economic and policy analysis," Energy, Elsevier, vol. 34(8), pages 1003-1013.
    28. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N. & Mokhtar, A.S., 2013. "Renewable energy resources for distributed power generation in Nigeria: A review of the potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 257-268.
    29. Bora, Bhaskor J. & Saha, Ujjwal K., 2015. "Comparative assessment of a biogas run dual fuel diesel engine with rice bran oil methyl ester, pongamia oil methyl ester and palm oil methyl ester as pilot fuels," Renewable Energy, Elsevier, vol. 81(C), pages 490-498.
    30. Ramadhas, A.S. & Jayaraj, S. & Muraleedharan, C., 2008. "Dual fuel mode operation in diesel engines using renewable fuels: Rubber seed oil and coir-pith producer gas," Renewable Energy, Elsevier, vol. 33(9), pages 2077-2083.
    31. Barik, Debabrata & Murugan, S. & Sivaram, N.M. & Baburaj, E. & Shanmuga Sundaram, P., 2017. "Experimental investigation on the behavior of a direct injection diesel engine fueled with Karanja methyl ester-biogas dual fuel at different injection timings," Energy, Elsevier, vol. 118(C), pages 127-138.
    32. Owen, Nick A. & Inderwildi, Oliver R. & King, David A., 2010. "The status of conventional world oil reserves--Hype or cause for concern?," Energy Policy, Elsevier, vol. 38(8), pages 4743-4749, August.
    33. Sahoo, Bibhuti B. & Saha, Ujjwal K. & Sahoo, Niranjan, 2011. "Theoretical performance limits of a syngas–diesel fueled compression ignition engine from second law analysis," Energy, Elsevier, vol. 36(2), pages 760-769.
    34. Rosha, Pali & Dhir, Amit & Mohapatra, Saroj Kumar, 2018. "Influence of gaseous fuel induction on the various engine characteristics of a dual fuel compression ignition engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3333-3349.
    35. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza & Hashim, Haslenda, 2011. "Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 574-583, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Narayanamoorthy, Samayan & Ramya, L. & Kalaiselvan, Samayan & Kureethara, Joseph Varghese & Kang, Daekook, 2021. "Use of DEMATEL and COPRAS method to select best alternative fuel for control of impact of greenhouse gas emissions," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    2. Prabhakar Sharma & Ajay Chhillar & Zafar Said & Saim Memon, 2021. "Exploring the Exhaust Emission and Efficiency of Algal Biodiesel Powered Compression Ignition Engine: Application of Box–Behnken and Desirability Based Multi-Objective Response Surface Methodology," Energies, MDPI, vol. 14(18), pages 1-22, September.
    3. Prasad, G. Arun & Murugan, P.C. & Wincy, W. Beno & Sekhar, S. Joseph, 2021. "Response Surface Methodology to predict the performance and emission characteristics of gas-diesel engine working on producer gases of non-uniform calorific values," Energy, Elsevier, vol. 234(C).
    4. Ali Diané & Gounkaou Woro Yomi & Sidiki Zongo & Tizane Daho & Hervé Jeanmart, 2023. "Characterization, at Partial Loads, of the Combustion and Emissions of a Dual-Fuel Engine Burning Diesel and a Lean Gas Surrogate," Energies, MDPI, vol. 16(15), pages 1-16, July.
    5. Alruqi, Mansoor & Sharma, Prabhakar & Ağbulut, Ümit, 2023. "Investigations on biomass gasification derived producer gas and algal biodiesel to power a dual-fuel engines: Application of neural networks optimized with Bayesian approach and K-cross fold," Energy, Elsevier, vol. 282(C).
    6. Ribó-Pérez, David & Herraiz-Cañete, Ángela & Alfonso-Solar, David & Vargas-Salgado, Carlos & Gómez-Navarro, Tomás, 2021. "Modelling biomass gasifiers in hybrid renewable energy microgrids; a complete procedure for enabling gasifiers simulation in HOMER," Renewable Energy, Elsevier, vol. 174(C), pages 501-512.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaliwal, V.S. & Banapurmath, N.R. & Gireesh, N.M. & Hosmath, R.S. & Donateo, Teresa & Tewari, P.G., 2016. "Effect of nozzle and combustion chamber geometry on the performance of a diesel engine operated on dual fuel mode using renewable fuels," Renewable Energy, Elsevier, vol. 93(C), pages 483-501.
    2. Rosha, Pali & Dhir, Amit & Mohapatra, Saroj Kumar, 2018. "Influence of gaseous fuel induction on the various engine characteristics of a dual fuel compression ignition engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3333-3349.
    3. Hernández, J.J. & Lapuerta, M. & Barba, J., 2015. "Effect of partial replacement of diesel or biodiesel with gas from biomass gasification in a diesel engine," Energy, Elsevier, vol. 89(C), pages 148-157.
    4. Yaliwal, V.S. & Banapurmath, N.R. & Gireesh, N.M. & Tewari, P.G., 2014. "Production and utilization of renewable and sustainable gaseous fuel for power generation applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 608-627.
    5. Nayak, Swarup Kumar & Chandra Mishra, Purna, 2019. "Combustion characteristics, performances and emissions of a biodiesel-producer gas dual fuel engine with varied combustor geometry," Energy, Elsevier, vol. 168(C), pages 585-600.
    6. Salman Abdu Ahmed & Song Zhou & Yuanqing Zhu & Asfaw Solomon Tsegay & Yoming Feng & Naseem Ahmad & Adil Malik, 2020. "Effects of Pig Manure and Corn Straw Generated Biogas and Methane Enriched Biogas on Performance and Emission Characteristics of Dual Fuel Diesel Engines," Energies, MDPI, vol. 13(4), pages 1-23, February.
    7. No, Soo-Young, 2011. "Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 131-149, January.
    8. Khayum, Naseem & Anbarasu, S. & Murugan, S., 2021. "Optimization of fuel injection parameters and compression ratio of a biogas fueled diesel engine using methyl esters of waste cooking oil as a pilot fuel," Energy, Elsevier, vol. 221(C).
    9. Weronika Gracz & Damian Marcinkowski & Wojciech Golimowski & Filip Szwajca & Maria Strzelczyk & Jacek Wasilewski & Paweł Krzaczek, 2021. "Multifaceted Comparison Efficiency and Emission Characteristics of Multi-Fuel Power Generator Fueled by Different Fuels and Biofuels," Energies, MDPI, vol. 14(12), pages 1-19, June.
    10. K. M. Akkoli & N. R. Banapurmath & Suresh G & Manzoore Elahi M. Soudagar & T. M. Yunus Khan & Maughal Ahmed Ali Baig & M. A. Mujtaba & Nazia Hossain & Kiran Shahapurkar & Ashraf Elfasakhany & Mishal A, 2021. "Effect of Producer Gas from Redgram Stalk and Combustion Chamber Types on the Emission and Performance Characteristics of Diesel Engine," Energies, MDPI, vol. 14(18), pages 1-17, September.
    11. Adhirath Mandal & Haengmuk Cho & Bhupendra Singh Chauhan, 2021. "ANN Prediction of Performance and Emissions of CI Engine Using Biogas Flow Variation," Energies, MDPI, vol. 14(10), pages 1-18, May.
    12. Khandal, S.V. & Banapurmath, N.R. & Gaitonde, V.N., 2018. "Effect of hydrogen fuel flow rate, fuel injection timing and exhaust gas recirculation on the performance of dual fuel engine powered with renewable fuels," Renewable Energy, Elsevier, vol. 126(C), pages 79-94.
    13. Paul, Abhishek & Panua, Raj Sekhar & Debroy, Durbadal & Bose, Probir Kumar, 2014. "Effect of compressed natural gas dual fuel operation with diesel and Pongamia pinnata methyl ester (PPME) as pilot fuels on performance and emission characteristics of a CI (compression ignition) engi," Energy, Elsevier, vol. 68(C), pages 495-509.
    14. Mahla, S.K. & Dhir, Amit & Gill, Kanwar J.S. & Cho, Haeng Muk & Lim, Hee Chang & Chauhan, Bhupendra Singh, 2018. "Influence of EGR on the simultaneous reduction of NOx-smoke emissions trade-off under CNG-biodiesel dual fuel engine," Energy, Elsevier, vol. 152(C), pages 303-312.
    15. Hosmath, R.S. & Banapurmath, N.R. & Khandal, S.V. & Gaitonde, V.N. & Basavarajappa, Y.H. & Yaliwal, V.S., 2016. "Effect of compression ratio, CNG flow rate and injection timing on the performance of dual fuel engine operated on honge oil methyl ester (HOME) and compressed natural gas (CNG)," Renewable Energy, Elsevier, vol. 93(C), pages 579-590.
    16. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N. & Ibrahem, I.S., 2017. "Existing and recommended renewable and sustainable energy development in Nigeria based on autonomous energy and microgrid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 820-838.
    17. Sharma, Mohit & Kaushal, Rajneesh, 2020. "Performance and emission analysis of a dual fuel variable compression ratio (VCR) CI engine utilizing producer gas derived from walnut shells," Energy, Elsevier, vol. 192(C).
    18. Prasad, G. Arun & Murugan, P.C. & Wincy, W. Beno & Sekhar, S. Joseph, 2021. "Response Surface Methodology to predict the performance and emission characteristics of gas-diesel engine working on producer gases of non-uniform calorific values," Energy, Elsevier, vol. 234(C).
    19. Barik, Debabrata & Murugan, S. & Sivaram, N.M. & Baburaj, E. & Shanmuga Sundaram, P., 2017. "Experimental investigation on the behavior of a direct injection diesel engine fueled with Karanja methyl ester-biogas dual fuel at different injection timings," Energy, Elsevier, vol. 118(C), pages 127-138.
    20. Alarico Macor & Alberto Benato, 2020. "Regulated Emissions of Biogas Engines—On Site Experimental Measurements and Damage Assessment on Human Health," Energies, MDPI, vol. 13(5), pages 1-38, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:117:y:2020:i:c:s1364032119306938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.