IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v110y2019icp368-377.html
   My bibliography  Save this article

Integration of greenhouse agriculture to the energy infrastructure as an alimentary solution

Author

Listed:
  • Farfan, Javier
  • Lohrmann, Alena
  • Breyer, Christian

Abstract

There is an evident food, water and energy crisis worldwide. Up to a quarter of the global population has no reliable access to any of these basic supplies. The published literature reveals that research is being carried out on sustainable and comprehensive energy transitions. Simultaneously, research on different aspects of agriculture, such as energy intensity and water use are constantly investigated, mostly at local or regional level. However, the published literature has not yet addressed a recently developed model of agriculture, the container sized agricultural units, which can be integrated to energy production facilities providing an opportunity for a symbiotic relation whereby both systems benefit. Results show that using only 5% of the projected electricity generation (2527 TWhel) from biomass, utility-scale photovoltaic, wind and waste-to-energy for proposed cases, a total of 55.4 million container-sized agricultural units can be powered globally by 2050, providing the recommended vegetable intake to 24.4% of the projected global population. The proposed approach eliminates the need of pesticides and herbicides, and reduces water, land and fertilizer use, while decreasing the need for transportation. Additionally, the CO2 emissions from point sources, such as power plants, can be captured and used to increase the yield of the agricultural units by up to 30%.

Suggested Citation

  • Farfan, Javier & Lohrmann, Alena & Breyer, Christian, 2019. "Integration of greenhouse agriculture to the energy infrastructure as an alimentary solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 368-377.
  • Handle: RePEc:eee:rensus:v:110:y:2019:i:c:p:368-377
    DOI: 10.1016/j.rser.2019.04.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119303053
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.04.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dmitrii Bogdanov & Javier Farfan & Kristina Sadovskaia & Arman Aghahosseini & Michael Child & Ashish Gulagi & Ayobami Solomon Oyewo & Larissa Souza Noel Simas Barbosa & Christian Breyer, 2019. "Radical transformation pathway towards sustainable electricity via evolutionary steps," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    2. Li, Changsheng & Wang, Haiyu & Miao, Hong & Ye, Bin, 2017. "The economic and social performance of integrated photovoltaic and agricultural greenhouses systems: Case study in China," Applied Energy, Elsevier, vol. 190(C), pages 204-212.
    3. Bilandzija, Nikola & Voca, Neven & Jelcic, Barbara & Jurisic, Vanja & Matin, Ana & Grubor, Mateja & Kricka, Tajana, 2018. "Evaluation of Croatian agricultural solid biomass energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 225-230.
    4. Kleczkowski, Adam & Ellis, Ciaran & Hanley, Nick & Goulson, David, 2017. "Pesticides and bees: Ecological-economic modelling of bee populations on farmland," Ecological Modelling, Elsevier, vol. 360(C), pages 53-62.
    5. Morato, Teresa & Vaezi, Mahdi & Kumar, Amit, 2019. "Assessment of energy production potential from agricultural residues in Bolivia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 14-23.
    6. Fei, Rilong & Lin, Boqiang, 2017. "Estimates of energy demand and energy saving potential in China's agricultural sector," Energy, Elsevier, vol. 135(C), pages 865-875.
    7. Gojiya, Anil & Deb, Dipankar & Iyer, Kannan K.R., 2019. "Feasibility study of power generation from agricultural residue in comparison with soil incorporation of residue," Renewable Energy, Elsevier, vol. 134(C), pages 416-425.
    8. Trypanagnostopoulos, G. & Kavga, A. & Souliotis, Μ. & Tripanagnostopoulos, Y., 2017. "Greenhouse performance results for roof installed photovoltaics," Renewable Energy, Elsevier, vol. 111(C), pages 724-731.
    9. Goodman, Wylie & Minner, Jennifer, 2019. "Will the urban agricultural revolution be vertical and soilless? A case study of controlled environment agriculture in New York City," Land Use Policy, Elsevier, vol. 83(C), pages 160-173.
    10. Wopereis, Marco, 2018. "Tapping the nutritional power of vegetables," 2018: Reshaping Agriculture for Better Nutrition-The Agriculture, Food, Nutrition, Health Nexus, 13-14 August 2018 283198, Crawford Fund.
    11. Djanibekov, Utkur & Gaur, Varun, 2018. "Nexus of energy use, agricultural production, employment and incomes among rural households in Uttar Pradesh, India," Energy Policy, Elsevier, vol. 113(C), pages 439-453.
    12. Prestipino, M. & Galvagno, A. & Karlström, O. & Brink, A., 2018. "Energy conversion of agricultural biomass char: Steam gasification kinetics," Energy, Elsevier, vol. 161(C), pages 1055-1063.
    13. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Solar greenhouse an option for renewable and sustainable farming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3934-3945.
    14. Jensen, M.H. & Malter, A.J., 1995. "Protected Agriculture: A Global Review," Papers 253, World Bank - Technical Papers.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei, Rilong & Wang, Haolin & Wen, Zihao & Yuan, Zhen & Yuan, Kaihua & Chunga, Joseph, 2021. "Tracking factor substitution and the rebound effect of China’s agricultural energy consumption: A new research perspective from asymmetric response," Energy, Elsevier, vol. 216(C).
    2. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    3. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & de Santoli, Livio, 2022. "Can the renewable energy share increase in electricity and gas grids takes out the competitiveness of gas-driven CHP plants for distributed generation?," Energy, Elsevier, vol. 256(C).
    4. Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Omid Abrishambaf & Pedro Faria & Zita Vale & Juan M. Corchado, 2019. "Energy Scheduling Using Decision Trees and Emulation: Agriculture Irrigation with Run-of-the-River Hydroelectricity and a PV Case Study," Energies, MDPI, vol. 12(20), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassanien, Reda Hassanien Emam & Li, Ming & Yin, Fang, 2018. "The integration of semi-transparent photovoltaics on greenhouse roof for energy and plant production," Renewable Energy, Elsevier, vol. 121(C), pages 377-388.
    2. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    3. Cossu, Marco & Cossu, Andrea & Deligios, Paola A. & Ledda, Luigi & Li, Zhi & Fatnassi, Hicham & Poncet, Christine & Yano, Akira, 2018. "Assessment and comparison of the solar radiation distribution inside the main commercial photovoltaic greenhouse types in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 822-834.
    4. Wang, Tianyue & Wu, Gaoxiang & Chen, Jiewei & Cui, Peng & Chen, Zexi & Yan, Yangyang & Zhang, Yan & Li, Meicheng & Niu, Dongxiao & Li, Baoguo & Chen, Hongyi, 2017. "Integration of solar technology to modern greenhouse in China: Current status, challenges and prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1178-1188.
    5. Zhang, Jixiang & Li, Jun & Dong, Changqing & Zhang, Xiaolei & Rentizelas, Athanasios & Shen, Delong, 2021. "Comprehensive assessment of sustainable potential of agricultural residues for bioenergy based on geographical information system: A case study of China," Renewable Energy, Elsevier, vol. 173(C), pages 466-478.
    6. Zhang, Menghang & Yan, Tingxiang & Wang, Wei & Jia, Xuexiu & Wang, Jin & Klemeš, Jiří Jaromír, 2022. "Energy-saving design and control strategy towards modern sustainable greenhouse: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    7. Yano, Akira & Cossu, Marco, 2019. "Energy sustainable greenhouse crop cultivation using photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 116-137.
    8. Grzegorz Maj & Joanna Szyszlak-Bargłowicz & Grzegorz Zając & Tomasz Słowik & Paweł Krzaczek & Wiesław Piekarski, 2019. "Energy and Emission Characteristics of Biowaste from the Corn Grain Drying Process," Energies, MDPI, vol. 12(22), pages 1-20, November.
    9. McCauley, Darren & Pettigrew, Kerry, 2023. "Building a just transition in asia-pacific: Four strategies for reducing fossil fuel dependence and investing in clean energy," Energy Policy, Elsevier, vol. 183(C).
    10. Sankaralingam, Ravikumar & Sengottuvelan, Balasubramanian & Venkat, Pranesh & Selvaraj, Mahalingam & Arunachalam, Velmurugan & Natarajan, Jeyakumaran, 2020. "Experimental investigation on varying flame characteristics of benzoic resin solid fuel pellets," Renewable Energy, Elsevier, vol. 147(P1), pages 1500-1510.
    11. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    12. Nives Jovičić & Alan Antonović & Ana Matin & Suzana Antolović & Sanja Kalambura & Tajana Krička, 2022. "Biomass Valorization of Walnut Shell for Liquefaction Efficiency," Energies, MDPI, vol. 15(2), pages 1-13, January.
    13. Salim Almaliki & Nasim Monjezi, 2021. "Using new computer based techniques to optimise energy consumption in agricultural land levelling," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 67(4), pages 149-163.
    14. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Hasret Sahin & A. A. Solomon & Arman Aghahosseini & Christian Breyer, 2024. "Systemwide energy return on investment in a sustainable transition towards net zero power systems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Bakirtas, Tahsin & Akpolat, Ahmet Gokce, 2018. "The relationship between energy consumption, urbanization, and economic growth in new emerging-market countries," Energy, Elsevier, vol. 147(C), pages 110-121.
    17. Tanimonure, Victoria Adeyemi, 2021. "Impact of Climate Adaptation Strategies on the Net Farm Revenue of Underutilized Indigenous Vegetables’ (UIVs) Production in Southwest Nigeria," 2021 Conference, August 17-31, 2021, Virtual 315903, International Association of Agricultural Economists.
    18. Caldera, Upeksha & Breyer, Christian, 2020. "Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems," Energy, Elsevier, vol. 200(C).
    19. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    20. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:110:y:2019:i:c:p:368-377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.