IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v101y2019icp590-599.html
   My bibliography  Save this article

Moving towards the second generation of lignocellulosic biorefineries in the EU: Drivers, challenges, and opportunities

Author

Listed:
  • Hassan, Shady S.
  • Williams, Gwilym A.
  • Jaiswal, Amit K.

Abstract

The EU aims to achieve a variety of ambitious climate change mitigation and sustainable development goals by 2030. To deliver on this aim, the European Commission (EC) launched the bioeconomy strategy in 2012. At the heart of this policy is the concept of the sustainable Biorefinery, which is based centrally on a cost-effective conversion of lignocellulosic biomass into bioenergy and bioproducts. The first generation of biorefineries was based on utilization of edible food crops, which raised a “food vs. fuel” debate and questionable sustainability issues. To overcome this, lignocellulosic feedstock options currently being pursued range from non-food crops to agroforestry residues and wastes. Notwithstanding this, advanced biorefining is still an emerging sector, with unanswered questions relating to the choice of feedstocks, cost-effective lignocellulosic pretreatment, and identification of viable end products that will lead to sustainable development of this industry. Therefore, this review aims to provide a critical update on the possible future directions of this sector, with an emphasis on its role in the future European bioeconomy, against a background of global developments.

Suggested Citation

  • Hassan, Shady S. & Williams, Gwilym A. & Jaiswal, Amit K., 2019. "Moving towards the second generation of lignocellulosic biorefineries in the EU: Drivers, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 590-599.
  • Handle: RePEc:eee:rensus:v:101:y:2019:i:c:p:590-599
    DOI: 10.1016/j.rser.2018.11.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118307937
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.11.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Lin & van der Voet, Ester & Huppes, Gjalt, 2009. "An energy analysis of ethanol from cellulosic feedstock-Corn stover," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2003-2011, October.
    2. Nils Hooftman & Luis Oliveira & Maarten Messagie & Thierry Coosemans & Joeri Van Mierlo, 2016. "Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting," Energies, MDPI, vol. 9(2), pages 1-24, January.
    3. Louise Staffas & Mathias Gustavsson & Kes McCormick, 2013. "Strategies and Policies for the Bioeconomy and Bio-Based Economy: An Analysis of Official National Approaches," Sustainability, MDPI, vol. 5(6), pages 1-19, June.
    4. Lucy Nattrass & Clifford Biggs & Ausilio Bauen & Claudia Parisi & Emilio Rodriguez-Cerezo & Manuel GOMEZ BARBERO, 2016. "The EU bio-based industry: Results from a survey," JRC Research Reports JRC100357, Joint Research Centre.
    5. Shirkavand, Ehsan & Baroutian, Saeid & Gapes, Daniel J. & Young, Brent R., 2016. "Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 217-234.
    6. Xianzhi Meng & Arthur J. Ragauskas & Arthur J. Ragauskas & Arthur J. Ragauskas & Arthur J. Ragauskas, 2017. "Pseudo-Lignin Formation during Dilute acid Pretreatment for Cellulosic Ethanol," Recent Advances in Petrochemical Science, Juniper Publishers Inc., vol. 1(1), pages 1-5, April.
    7. Toivanen, Hannes & Novotny, Michael, 2017. "The emergence of patent races in lignocellulosic biofuels, 2002–2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 318-326.
    8. Bauer, Fredric & Coenen, Lars & Hansen, Teis & McCormick, Kes & Palgan, Yuliya Voytenko, 2016. "Technological innovation systems for biorefineries – A review of the literature," Papers in Innovation Studies 2016/27, Lund University, CIRCLE - Centre for Innovation Research.
    9. Mohr, Alison & Raman, Sujatha, 2013. "Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels," Energy Policy, Elsevier, vol. 63(C), pages 114-122.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kostas, Emily T. & Adams, Jessica M.M. & Ruiz, Héctor A. & Durán-Jiménez, Gabriela & Lye, Gary J., 2021. "Macroalgal biorefinery concepts for the circular bioeconomy: A review on biotechnological developments and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Joseph Oyekale & Mario Petrollese & Vittorio Tola & Giorgio Cau, 2020. "Impacts of Renewable Energy Resources on Effectiveness of Grid-Integrated Systems: Succinct Review of Current Challenges and Potential Solution Strategies," Energies, MDPI, vol. 13(18), pages 1-48, September.
    3. Amit & Divakar Dahiya & Uttam K. Ghosh & Poonam S. Nigam & Amit K. Jaiswal, 2021. "Food Industries Wastewater Recycling for Biodiesel Production through Microalgal Remediation," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
    4. Daniel T. Hickey & Daniel J. Hayes & J. Tony Pembroke & Michael P. Ryan & James J. Leahy, 2021. "The Importance of Extraction Protocol on the Analysis of Novel Waste Sources of Lignocellulosic Biomass," Energies, MDPI, vol. 14(19), pages 1-13, October.
    5. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    6. Tamás Mizik, 2021. "Economic Aspects and Sustainability of Ethanol Production—A Systematic Literature Review," Energies, MDPI, vol. 14(19), pages 1-25, September.
    7. Gupte, Ameya Pankaj & Basaglia, Marina & Casella, Sergio & Favaro, Lorenzo, 2022. "Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Mateus Torres Nazari & Janaína Mazutti & Luana Girardi Basso & Luciane Maria Colla & Luciana Brandli, 2021. "Biofuels and their connections with the sustainable development goals: a bibliometric and systematic review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11139-11156, August.
    10. Raj, Tirath & Chandrasekhar, K. & Naresh Kumar, A. & Kim, Sang-Hyoun, 2022. "Lignocellulosic biomass as renewable feedstock for biodegradable and recyclable plastics production: A sustainable approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Mizik, Tamás, 2022. "A bioetanol-termelés gazdasági és fenntarthatósági vetületei [Economic and sustainability aspects of bioethanol production]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(10), pages 1213-1241.
    12. Vandenberghe, L.P.S. & Valladares-Diestra, K.K. & Bittencourt, G.A. & Zevallos Torres, L.A. & Vieira, S. & Karp, S.G. & Sydney, E.B. & de Carvalho, J.C. & Thomaz Soccol, V. & Soccol, C.R., 2022. "Beyond sugar and ethanol: The future of sugarcane biorefineries in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Leibensperger, Carrie & Yang, Pan & Zhao, Qiankun & Wei, Shuran & Cai, Ximing, 2021. "The synergy between stakeholders for cellulosic biofuel development: Perspectives, opportunities, and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    14. Silvio Matassa & Giovanni Esposito & Francesco Pirozzi & Stefano Papirio, 2020. "Exploring the Biomethane Potential of Different Industrial Hemp ( Cannabis sativa L.) Biomass Residues," Energies, MDPI, vol. 13(13), pages 1-13, July.
    15. Mehta, Siddhi & Jha, Swarn & Liang, Hong, 2020. "Lignocellulose materials for supercapacitor and battery electrodes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    16. Melts, Indrek & Ivask, Mari & Geetha, Mohan & Takeuchi, Kazuhiko & Heinsoo, Katrin, 2019. "Combining bioenergy and nature conservation: An example in wetlands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 293-302.
    17. Liobikiene, Genovaite & Chen, Xueli & Streimikiene, Dalia & Balezentis, Tomas, 2020. "The trends in bioeconomy development in the European Union: Exploiting capacity and productivity measures based on the land footprint approach," Land Use Policy, Elsevier, vol. 91(C).
    18. Ogechukwu Bose Chukwuma & Mohd Rafatullah & Husnul Azan Tajarudin & Norli Ismail, 2021. "A Review on Bacterial Contribution to Lignocellulose Breakdown into Useful Bio-Products," IJERPH, MDPI, vol. 18(11), pages 1-27, June.
    19. Sebastian Serna-Loaiza & Manuel Dias & Laura Daza-Serna & Carla C. C. R. de Carvalho & Anton Friedl, 2021. "Integral Analysis of Liquid-Hot-Water Pretreatment of Wheat Straw: Evaluation of the Production of Sugars, Degradation Products, and Lignin," Sustainability, MDPI, vol. 14(1), pages 1-13, December.
    20. Mandley, S.J. & Daioglou, V. & Junginger, H.M. & van Vuuren, D.P. & Wicke, B., 2020. "EU bioenergy development to 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    21. Li, Dan & Lei, Shijun & Rajput, Gulzeb & Zhong, Lei & Ma, Wenchao & Chen, Guanyi, 2021. "Study on the co-pyrolysis of waste tires and plastics," Energy, Elsevier, vol. 226(C).
    22. Koytsoumpa, E.I. & Magiri – Skouloudi, D. & Karellas, S. & Kakaras, E., 2021. "Bioenergy with carbon capture and utilization: A review on the potential deployment towards a European circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lisa Biber-Freudenberger & Amit Kumar Basukala & Martin Bruckner & Jan Börner, 2018. "Sustainability Performance of National Bio-Economies," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    2. Walther Zeug & Alberto Bezama & Urs Moesenfechtel & Anne Jähkel & Daniela Thrän, 2019. "Stakeholders’ Interests and Perceptions of Bioeconomy Monitoring Using a Sustainable Development Goal Framework," Sustainability, MDPI, vol. 11(6), pages 1-24, March.
    3. Ghosh, Shiladitya & Chowdhury, Ranjana & Bhattacharya, Pinaki, 2017. "Sustainability of cereal straws for the fermentative production of second generation biofuels: A review of the efficiency and economics of biochemical pretreatment processes," Applied Energy, Elsevier, vol. 198(C), pages 284-298.
    4. Hannula, I. & Reiner, D., 2017. "The race to solve the sustainable transport problem via carbon-neutral synthetic fuels and battery electric vehicles," Cambridge Working Papers in Economics 1758, Faculty of Economics, University of Cambridge.
    5. Stefania Bracco & Ozgul Calicioglu & Marta Gomez San Juan & Alessandro Flammini, 2018. "Assessing the Contribution of Bioeconomy to the Total Economy: A Review of National Frameworks," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    6. Escobar, Neus & Laibach, Natalie, 2021. "Sustainability check for bio-based technologies: A review of process-based and life cycle approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Rolf Meyer, 2017. "Bioeconomy Strategies: Contexts, Visions, Guiding Implementation Principles and Resulting Debates," Sustainability, MDPI, vol. 9(6), pages 1-32, June.
    8. Laibach, Natalie & Börner, Jan & Bröring, Stefanie, 2019. "Exploring the future of the bioeconomy: An expert-based scoping study examining key enabling technology fields with potential to foster the transition toward a bio-based economy," Technology in Society, Elsevier, vol. 58(C).
    9. Raud, M. & Kikas, T. & Sippula, O. & Shurpali, N.J., 2019. "Potentials and challenges in lignocellulosic biofuel production technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 44-56.
    10. Marc Wentker & Matthew Greenwood & Jens Leker, 2019. "A Bottom-Up Approach to Lithium-Ion Battery Cost Modeling with a Focus on Cathode Active Materials," Energies, MDPI, vol. 12(3), pages 1-18, February.
    11. Daniela Pasnicu & Mihaela Ghenta & Aniela Matei, 2019. "Transition to Bioeconomy: Perceptions and Behaviors in Central and Eastern Europe," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 21(50), pages 1-9, February.
    12. Ruxandra Bejinaru & Cristian Valentin Hapenciuc & Iulian Condratov & Pavel Stanciu, 2018. "The University Role in Developing the Human Capital for a Sustainable Bioeconomy," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 20(49), pages 583-583, August.
    13. Wang, Ping & Liu, Chaoqi & Chang, Juan & Yin, Qingqiang & Huang, Weiwei & Liu, Yang & Dang, Xiaowei & Gao, Tianzeng & Lu, Fushan, 2019. "Effect of physicochemical pretreatments plus enzymatic hydrolysis on the composition and morphologic structure of corn straw," Renewable Energy, Elsevier, vol. 138(C), pages 502-508.
    14. Ma, Chunyan & Wang, Nan & Chen, Yifeng & Khokarale, Santosh Govind & Bui, Thai Q. & Weiland, Fredrik & Lestander, Torbjörn A. & Rudolfsson, Magnus & Mikkola, Jyri-Pekka & Ji, Xiaoyan, 2020. "Towards negative carbon emissions: Carbon capture in bio-syngas from gasification by aqueous pentaethylenehexamine," Applied Energy, Elsevier, vol. 279(C).
    15. Korhonen, J. & Zhang, Y. & Toppinen, A., 2016. "Examining timberland ownership and control strategies in the global forest sector," Forest Policy and Economics, Elsevier, vol. 70(C), pages 39-46.
    16. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Andrzej Czyżewski & Andrzej Grzyb & Anna Matuszczak & Mariola Michałowska, 2021. "Factors for Bioeconomy Development in EU Countries with Different Overall Levels of Economic Development," Energies, MDPI, vol. 14(11), pages 1-21, May.
    18. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    19. Stefano Ponte & Kean Birch, 2014. "Guest Editorial," Environment and Planning A, , vol. 46(2), pages 271-279, February.
    20. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:101:y:2019:i:c:p:590-599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.