IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v96y2016ipap966-976.html
   My bibliography  Save this article

Investment cost and view damage cost of siting an offshore wind farm: A spatial analysis of Lake Michigan

Author

Listed:
  • Chiang, Amy C.
  • Keoleian, Gregory A.
  • Moore, Michael R.
  • Kelly, Jarod C.

Abstract

Investment and view damage costs are important determinants in siting locations for offshore wind farms (OWF) in the Lake Michigan region. This study is limited to the Michigan state boundary for the OWF sites and viewshed impacts. Investment cost depends on the depth and distance to shore of the farm. View damage cost depends on household density and consumer willingness to pay to avoid the visual disamenity of wind turbines. Both these costs are dependent on the geographic location and are summed to create an aggregate cost. Using ArcGIS, the OWF siting locations were mapped, with spatial analysis revealing the northern region of the lake at the minimum aggregate cost. The view damage cost contributes at most 68%, but on average 7%, to the aggregate cost. The aggregate levelized cost of energy (LCOE) ranges from 183 to 368 $/MWh (average of 256 $/MWh). The view damage LCOE contribution to the aggregate LCOE is 3% on average and 46% at most. View damage impact is the dominating factor only around a small shoreline region (due to large impacted populations). A series of maps are presented that highlight the investment and view damage tradeoffs which can inform OWF siting in Lake Michigan.

Suggested Citation

  • Chiang, Amy C. & Keoleian, Gregory A. & Moore, Michael R. & Kelly, Jarod C., 2016. "Investment cost and view damage cost of siting an offshore wind farm: A spatial analysis of Lake Michigan," Renewable Energy, Elsevier, vol. 96(PA), pages 966-976.
  • Handle: RePEc:eee:renene:v:96:y:2016:i:pa:p:966-976
    DOI: 10.1016/j.renene.2016.04.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116303779
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.04.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Landry, Craig E. & Allen, Tom & Cherry, Todd & Whitehead, John C., 2012. "Wind turbines and coastal recreation demand," Resource and Energy Economics, Elsevier, vol. 34(1), pages 93-111.
    2. Andrew D. Krueger & George R. Parsons & Jeremy Firestone, 2011. "Valuing the Visual Disamenity of Offshore Wind Projects at Varying Distances from the Shore: An Application on the Delaware Shoreline," Working Papers 11-04, University of Delaware, Department of Economics.
    3. Kim, Ji-Young & Oh, Ki-Yong & Kang, Keum-Seok & Lee, Jun-Shin, 2013. "Site selection of offshore wind farms around the Korean Peninsula through economic evaluation," Renewable Energy, Elsevier, vol. 54(C), pages 189-195.
    4. Latinopoulos, D. & Kechagia, K., 2015. "A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece," Renewable Energy, Elsevier, vol. 78(C), pages 550-560.
    5. Andrew D. Krueger & George R. Parsons & Jeremy Firestone, 2011. "Valuing the Visual Disamenity of Offshore Wind Power Projects at Varying Distances from the Shore: An Application on the Delaware Shoreline," Land Economics, University of Wisconsin Press, vol. 87(2), pages 268-283.
    6. Martin D. Heintzelman & Carrie M. Tuttle, 2012. "Values in the Wind: A Hedonic Analysis of Wind Power Facilities," Land Economics, University of Wisconsin Press, vol. 88(3), pages 571-588.
    7. Ladenburg, Jacob & Dubgaard, Alex, 2007. "Willingness to pay for reduced visual disamenities from offshore wind farms in Denmark," Energy Policy, Elsevier, vol. 35(8), pages 4059-4071, August.
    8. Jeremy Firestone & Willett Kempton & Meredith Blaydes Lilley & Kateryna Samoteskul, 2012. "Public acceptance of offshore wind power across regions and through time," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 55(10), pages 1369-1386, April.
    9. Martin L. Weitzman, 2001. "Gamma Discounting," American Economic Review, American Economic Association, vol. 91(1), pages 260-271, March.
    10. Fernando Porté-Agel & Yu-Ting Wu & Chang-Hung Chen, 2013. "A Numerical Study of the Effects of Wind Direction on Turbine Wakes and Power Losses in a Large Wind Farm," Energies, MDPI, vol. 6(10), pages 1-17, October.
    11. Jeremy Firestone & Willett Kempton & Meredith Blaydes Lilley & Kateryna Samoteskul, 2012. "Public acceptance of offshore wind power: does perceived fairness of process matter?," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 55(10), pages 1387-1402, April.
    12. Dicorato, M. & Forte, G. & Pisani, M. & Trovato, M., 2011. "Guidelines for assessment of investment cost for offshore wind generation," Renewable Energy, Elsevier, vol. 36(8), pages 2043-2051.
    13. Ladenburg, Jacob & Lutzeyer, Sanja, 2012. "The economics of visual disamenity reductions of offshore wind farms—Review and suggestions from an emerging field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6793-6802.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deirdre O’Donnell & Jimmy Murphy & Vikram Pakrashi, 2020. "Damage Monitoring of a Catenary Moored Spar Platform for Renewable Energy Devices," Energies, MDPI, vol. 13(14), pages 1-22, July.
    2. Li, Jiale & Yu, Xiong (Bill), 2018. "Onshore and offshore wind energy potential assessment near Lake Erie shoreline: A spatial and temporal analysis," Energy, Elsevier, vol. 147(C), pages 1092-1107.
    3. Tazi, Nacef & Safaei, Fatemeh & Hnaien, Faicel, 2022. "Assessment of the levelized cost of energy using a stochastic model," Energy, Elsevier, vol. 238(PB).
    4. Sarah Barrows & Kendall Mongird & Brian Naughton & Rachid Darbali-Zamora, 2021. "Valuation of Distributed Wind in an Isolated System," Energies, MDPI, vol. 14(21), pages 1-20, October.
    5. Clark, Caitlyn E. & Miller, Annalise & DuPont, Bryony, 2019. "An analytical cost model for co-located floating wind-wave energy arrays," Renewable Energy, Elsevier, vol. 132(C), pages 885-897.
    6. Sascha Samadi, 2017. "The Social Costs of Electricity Generation—Categorising Different Types of Costs and Evaluating Their Respective Relevance," Energies, MDPI, vol. 10(3), pages 1-37, March.
    7. Peters, Jared L. & Remmers, Tiny & Wheeler, Andrew J. & Murphy, Jimmy & Cummins, Valerie, 2020. "A systematic review and meta-analysis of GIS use to reveal trends in offshore wind energy research and offer insights on best practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Kooten, G. Cornelis, 2015. "All you want to know about the Economics of Wind Power," Working Papers 241693, University of Victoria, Resource Economics and Policy.
    2. Lutzeyer, Sanja & Phaneuf, Daniel J. & Taylor, Laura O., 2018. "The amenity costs of offshore wind farms: Evidence from a choice experiment," Energy Economics, Elsevier, vol. 72(C), pages 621-639.
    3. Lauren Knapp & Jacob Ladenburg, 2015. "How Spatial Relationships Influence Economic Preferences for Wind Power—A Review," Energies, MDPI, vol. 8(6), pages 1-25, June.
    4. Russell, Aaron & Bingaman, Samantha & Garcia, Hannah-Marie, 2021. "Threading a moving needle: The spatial dimensions characterizing US offshore wind policy drivers," Energy Policy, Elsevier, vol. 157(C).
    5. Ladenburg, Jacob & Hevia-Koch, Pablo & Petrović, Stefan & Knapp, Lauren, 2020. "The offshore-onshore conundrum: Preferences for wind energy considering spatial data in Denmark," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    6. Brennan, Noreen & Van Rensburg, Thomas M, 2016. "Wind farm externalities and public preferences for community consultation in Ireland: A discrete choice experiments approach," Energy Policy, Elsevier, vol. 94(C), pages 355-365.
    7. Boyle, Kevin J. & Boatwright, Jessica & Brahma, Sreeya & Xu, Weibin, 2019. "NIMBY, not, in siting community wind farms," Resource and Energy Economics, Elsevier, vol. 57(C), pages 85-100.
    8. Ladenburg, Jacob & Lutzeyer, Sanja, 2012. "The economics of visual disamenity reductions of offshore wind farms—Review and suggestions from an emerging field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6793-6802.
    9. Petter Gudding & Gorm Kipperberg & Craig Bond & Kelly Cullen & Eric Steltzer, 2018. "When a Good Is a Bad (or a Bad Is a Good)—Analysis of Data from an Ambiguous Nonmarket Valuation Setting," Sustainability, MDPI, vol. 10(1), pages 1-16, January.
    10. Ladenburg, Jacob & Skotte, Maria, 2022. "Heterogeneity in willingness to pay for the location of offshore wind power development: An application of the willingness to pay space model," Energy, Elsevier, vol. 241(C).
    11. Parsons, George & Firestone, Jeremy & Yan, Lingxiao & Toussaint, Jenna, 2020. "The effect of offshore wind power projects on recreational beach use on the east coast of the United States: Evidence from contingent-behavior data," Energy Policy, Elsevier, vol. 144(C).
    12. Joalland, Olivier & Mahieu, Pierre-Alexandre, 2023. "Developing large-scale offshore wind power programs: A choice experiment analysis in France," Ecological Economics, Elsevier, vol. 204(PA).
    13. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    14. Ladenburg, Jacob & Möller, Bernd, 2011. "Attitude and acceptance of offshore wind farms—The influence of travel time and wind farm attributes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4223-4235.
    15. García, Jorge H. & Cherry, Todd L. & Kallbekken, Steffen & Torvanger, Asbjørn, 2016. "Willingness to accept local wind energy development: Does the compensation mechanism matter?," Energy Policy, Elsevier, vol. 99(C), pages 165-173.
    16. Petrova, Maria A., 2016. "From NIMBY to acceptance: Toward a novel framework — VESPA — For organizing and interpreting community concerns," Renewable Energy, Elsevier, vol. 86(C), pages 1280-1294.
    17. Strazzera, Elisabetta & Mura, Marina & Contu, Davide, 2012. "Combining choice experiments with psychometric scales to assess the social acceptability of wind energy projects: A latent class approach," Energy Policy, Elsevier, vol. 48(C), pages 334-347.
    18. Griffin, Robert & Chaumont, Nicolas & Denu, Douglas & Guerry, Anne & Kim, Choong-Ki & Ruckelshaus, Mary, 2015. "Incorporating the visibility of coastal energy infrastructure into multi-criteria siting decisions," Marine Policy, Elsevier, vol. 62(C), pages 218-223.
    19. Vanja WESTERBERG & Jette BREDAHL JACOBSEN & Robert LIFRAN, 2012. "The Multi-faceted Nature of Preferences for Offshore Wind Farm Siting," Working Papers 12-22, LAMETA, Universtiy of Montpellier, revised Jul 2012.
    20. Langer, Katharina & Decker, Thomas & Roosen, Jutta & Menrad, Klaus, 2016. "A qualitative analysis to understand the acceptance of wind energy in Bavaria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 248-259.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:96:y:2016:i:pa:p:966-976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.