IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v80y2015icp117-122.html
   My bibliography  Save this article

Cultivation of four microalgae for biomass and oil production using a two-stage culture strategy with salt stress

Author

Listed:
  • Ra, Chae Hun
  • Kang, Chang-Han
  • Kim, Na Kyoung
  • Lee, Choul-Gyun
  • Kim, Sung-Koo

Abstract

A two-stage culture strategy was used for maximum biomass production under nutrient-sufficient conditions, followed by cultivation under low-salt stress, to cause the accumulation of oil in the biomass. Controlled conditions of nitrate, salt concentration, and time to exposure to stress were optimized for oil production with four species of microalgae, Isochrysis galbana, Nannochloropsis oculata, Dunaliella salina, and Dunaliella tertiolecta. Using conditions with addition of nitrate to 24.0 mg/L, I. galbana and N. oculata showed higher biomass productions than D. salina and D. tertiolecta. The oil contents of the microalgae increased from 24.0% to 47.0% in I. galbana with 10 psu for 2 days, from 17.0% to 29.0% in N. oculata with 0 psu for 3 days, from 22.0% to 43.0% of D. salina with 10 psu for 1 day, and from 23.0% to 40.0% (w/w) in D. tertiolecta with 0 psu for 2 days as the second stage culture with low-salt stress. Thus, I. galbana could be a suitable candidate microalga for oil production.

Suggested Citation

  • Ra, Chae Hun & Kang, Chang-Han & Kim, Na Kyoung & Lee, Choul-Gyun & Kim, Sung-Koo, 2015. "Cultivation of four microalgae for biomass and oil production using a two-stage culture strategy with salt stress," Renewable Energy, Elsevier, vol. 80(C), pages 117-122.
  • Handle: RePEc:eee:renene:v:80:y:2015:i:c:p:117-122
    DOI: 10.1016/j.renene.2015.02.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115000920
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.02.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sánchez, Ángel & Maceiras, Rocio & Cancela, Ángeles & Pérez, Alfonso, 2013. "Culture aspects of Isochrysis galbana for biodiesel production," Applied Energy, Elsevier, vol. 101(C), pages 192-197.
    2. Tang, Haiying & Abunasser, Nadia & Garcia, M.E.D. & Chen, Meng & Simon Ng, K.Y. & Salley, Steven O., 2011. "Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel," Applied Energy, Elsevier, vol. 88(10), pages 3324-3330.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zahra Shokravi & Hoofar Shokravi & Ong Hwai Chyuan & Woei Jye Lau & Seyed Saeid Rahimian Koloor & Michal Petrů & Ahmad Fauzi Ismail, 2020. "Improving ‘Lipid Productivity’ in Microalgae by Bilateral Enhancement of Biomass and Lipid Contents: A Review," Sustainability, MDPI, vol. 12(21), pages 1-28, October.
    2. Xie, Zhen & Pei, Haiyan & Zhang, Lijie & Yang, Zhigang & Nie, Changliang & Hou, Qingjie & Yu, Ze, 2020. "Accelerating lipid production in freshwater alga Chlorella sorokiniana SDEC-18 by seawater and ultrasound during the stationary phase," Renewable Energy, Elsevier, vol. 161(C), pages 448-456.
    3. Sajjadi, Baharak & Chen, Wei-Yin & Raman, Abdul. Aziz. Abdul & Ibrahim, Shaliza, 2018. "Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 200-232.
    4. Gong, Zhiqiang & Fang, Peiwen & Wang, Zhenbo & Li, Xiaoyu & Wang, Zhentong & Meng, Fanzhi, 2020. "Pyrolysis characteristics and products distribution of haematococcus pluvialis microalgae and its extraction residue," Renewable Energy, Elsevier, vol. 146(C), pages 2134-2141.
    5. Zhang, Lei & Wang, Nan & Yang, Mei & Ding, Ke & Wang, Yong-Zhong & Huo, Danqun & Hou, Changjun, 2019. "Lipid accumulation and biodiesel quality of Chlorella pyrenoidosa under oxidative stress induced by nutrient regimes," Renewable Energy, Elsevier, vol. 143(C), pages 1782-1790.
    6. Zhu, Liandong & Nugroho, Y.K. & Shakeel, S.R. & Li, Zhaohua & Martinkauppi, B. & Hiltunen, E., 2017. "Using microalgae to produce liquid transportation biodiesel: What is next?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 391-400.
    7. Dammak, Mouna & Ben Hlima, Hajer & Elleuch, Fatma & Pichon, Chantal & Michaud, Philippe & Fendri, Imen & Abdelkafi, Slim, 2021. "Flow cytometry assay to evaluate lipid production by the marine microalga Tetraselmis sp. using a two stage process," Renewable Energy, Elsevier, vol. 177(C), pages 280-289.
    8. Seung-Woo Jo & Ji Won Hong & Jeong-Mi Do & Ho Na & Jin-Ju Kim & Seong-Im Park & Young-Saeng Kim & Il-Sup Kim & Ho-Sung Yoon, 2020. "Nitrogen Deficiency-Dependent Abiotic Stress Enhances Carotenoid Production in Indigenous Green Microalga Scenedesmus rubescens KNUA042, for Use as a Potential Resource of High Value Products," Sustainability, MDPI, vol. 12(13), pages 1-25, July.
    9. Xiao, Chao & Fu, Qian & Liao, Qiang & Huang, Yun & Xia, Ao & Chen, Hao & Zhu, Xun, 2020. "Life cycle and economic assessments of biogas production from microalgae biomass with hydrothermal pretreatment via anaerobic digestion," Renewable Energy, Elsevier, vol. 151(C), pages 70-78.
    10. Coşgun, Ahmet & Günay, M. Erdem & Yıldırım, Ramazan, 2021. "Exploring the critical factors of algal biomass and lipid production for renewable fuel production by machine learning," Renewable Energy, Elsevier, vol. 163(C), pages 1299-1317.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Arroussi, Hicham & Benhima, Redouane & El Mernissi, Najib & Bouhfid, Rachid & Tilsaghani, Chakib & Bennis, Iman & Wahby, Imane, 2017. "Screening of marine microalgae strains from Moroccan coasts for biodiesel production," Renewable Energy, Elsevier, vol. 113(C), pages 1515-1522.
    2. Liu, Guangmin & Qiao, Lina & Zhang, Hong & Zhao, Dan & Su, Xudong, 2014. "The effects of illumination factors on the growth and HCO3− fixation of microalgae in an experiment culture system," Energy, Elsevier, vol. 78(C), pages 40-47.
    3. Sánchez-Bayo, Alejandra & López-Chicharro, Daniel & Morales, Victoria & Espada, Juan José & Puyol, Daniel & Martínez, Fernando & Astals, Sergi & Vicente, Gemma & Bautista, Luis Fernando & Rodríguez, R, 2020. "Biodiesel and biogas production from Isochrysis galbana using dry and wet lipid extraction: A biorefinery approach," Renewable Energy, Elsevier, vol. 146(C), pages 188-195.
    4. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    5. El Arroussi, Hicham & Benhima, Redouane & Bennis, Iman & El Mernissi, Najib & Wahby, Imane, 2015. "Improvement of the potential of Dunaliella tertiolecta as a source of biodiesel by auxin treatment coupled to salt stress," Renewable Energy, Elsevier, vol. 77(C), pages 15-19.
    6. Söyler, Nejmi & Goldfarb, Jillian L. & Ceylan, Selim & Saçan, Melek Türker, 2017. "Renewable fuels from pyrolysis of Dunaliella tertiolecta: An alternative approach to biochemical conversions of microalgae," Energy, Elsevier, vol. 120(C), pages 907-914.
    7. Milano, Jassinnee & Ong, Hwai Chyuan & Masjuki, H.H. & Chong, W.T. & Lam, Man Kee & Loh, Ping Kwan & Vellayan, Viknes, 2016. "Microalgae biofuels as an alternative to fossil fuel for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 180-197.
    8. Marwa G. Saad & Noura S. Dosoky & Mohamed S. Zoromba & Hesham M. Shafik, 2019. "Algal Biofuels: Current Status and Key Challenges," Energies, MDPI, vol. 12(10), pages 1-22, May.
    9. Cao, Leichang & Zhang, Shicheng, 2015. "Production and characterization of biodiesel derived from Hodgsonia macrocarpa seed oil," Applied Energy, Elsevier, vol. 146(C), pages 135-140.
    10. Kumar, Anup & Guria, Chandan & Pathak, Akhilendra K., 2018. "Optimal cultivation towards enhanced algae-biomass and lipid production using Dunaliella tertiolecta for biofuel application and potential CO2 bio-fixation: Effect of nitrogen deficient fertilizer, li," Energy, Elsevier, vol. 148(C), pages 1069-1086.
    11. Daroch, Maurycy & Geng, Shu & Wang, Guangyi, 2013. "Recent advances in liquid biofuel production from algal feedstocks," Applied Energy, Elsevier, vol. 102(C), pages 1371-1381.
    12. Shimaa M. El Shafay & Ahmed Gaber & Walaa F. Alsanie & Mostafa E. Elshobary, 2021. "Influence of Nutrient Manipulation on Growth and Biochemical Constituent in Anabaena variabilis and Nostoc muscorum to Enhance Biodiesel Production," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    13. Jiang, Liling & Luo, Shengjun & Fan, Xiaolei & Yang, Zhiman & Guo, Rongbo, 2011. "Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2," Applied Energy, Elsevier, vol. 88(10), pages 3336-3341.
    14. Cheah, Wai Yan & Ling, Tau Chuan & Show, Pau Loke & Juan, Joon Ching & Chang, Jo-Shu & Lee, Duu-Jong, 2016. "Cultivation in wastewaters for energy: A microalgae platform," Applied Energy, Elsevier, vol. 179(C), pages 609-625.
    15. Coşgun, Ahmet & Günay, M. Erdem & Yıldırım, Ramazan, 2021. "Exploring the critical factors of algal biomass and lipid production for renewable fuel production by machine learning," Renewable Energy, Elsevier, vol. 163(C), pages 1299-1317.
    16. Rosmahadi, Nurulfarah Adilah & Rawindran, Hemamalini & Lim, Jun Wei & Kiatkittipong, Worapon & Assabumrungrat, Suttichai & Najdanovic-Visak, Vesna & Wang, Jiawei & Chidi, Boredi Silas & Ho, Chii-Dong , 2022. "Enhancing growth environment for attached microalgae to populate onto spent coffee grounds in producing biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    17. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    18. Cao, Leichang & Wang, Jieni & Liu, Cheng & Chen, Yanwei & Liu, Kuojin & Han, Sheng, 2014. "Ethylene vinyl acetate copolymer: A bio-based cold flow improver for waste cooking oil derived biodiesel blends," Applied Energy, Elsevier, vol. 132(C), pages 163-167.
    19. Kshetrimayum Birla Singh & Kaushalendra & Savita Verma & Rowland Lalnunpuii & Jay Prakash Rajan, 2023. "Current Issues and Developments in Cyanobacteria-Derived Biofuel as a Potential Source of Energy for Sustainable Future," Sustainability, MDPI, vol. 15(13), pages 1-13, July.
    20. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:80:y:2015:i:c:p:117-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.