IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v78y2014icp40-47.html
   My bibliography  Save this article

The effects of illumination factors on the growth and HCO3− fixation of microalgae in an experiment culture system

Author

Listed:
  • Liu, Guangmin
  • Qiao, Lina
  • Zhang, Hong
  • Zhao, Dan
  • Su, Xudong

Abstract

Illumination factors can affect growth of microalgae and HCO3− fixation. In order to optimize microalgae growth in culture system and HCO3− fixation from wastewater, the effects of light source, light interval on the growth of microalgae, Chlorella sp. and Scenedesmus obliquus sp., were studied in experiment culture system. The effects of light intensity and available illumination area on HCO3− fixation of microalgae were also considered. Microalgae were grown in a constant light incubator-shaking table experiment system (CLIST system) to assess biomass, pH, DO, and HCO3− concentration at 30°C cultivation temperature. The light interval evaluated were 15min, 1h, 4h, 8h and 12h, respectively. HCO3− fixation of microalgae was investigated at five different light intensities (1000, 2000, 3700, 6800 and 8200lux) and four available illumination areas (45, 80, 120, 200cm2) in CLIST system. Under the light interval of 12:12, light intensity of 6800lux and available illumination area of 200cm2, the removal rate of HCO3− in the water was found to be 65.7%, with a maximum biomass concentration above 1400mg/L. In this study, 0.953g HCO3− in per litre of wastewater would be captured by microalgae, in other word, producing 1.00g of microalgae biomass fixed 1.10g of HCO3−.

Suggested Citation

  • Liu, Guangmin & Qiao, Lina & Zhang, Hong & Zhao, Dan & Su, Xudong, 2014. "The effects of illumination factors on the growth and HCO3− fixation of microalgae in an experiment culture system," Energy, Elsevier, vol. 78(C), pages 40-47.
  • Handle: RePEc:eee:energy:v:78:y:2014:i:c:p:40-47
    DOI: 10.1016/j.energy.2014.05.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214006094
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.05.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amaro, Helena M. & Macedo, Ângela C. & Malcata, F. Xavier, 2012. "Microalgae: An alternative as sustainable source of biofuels?," Energy, Elsevier, vol. 44(1), pages 158-166.
    2. Jeong, Hakgeun & Lee, Junghoon & Cha, Misun, 2013. "Energy efficient growth control of microalgae using photobiological methods," Renewable Energy, Elsevier, vol. 54(C), pages 161-165.
    3. Nemet, Gregory F. & Baker, Erin & Jenni, Karen E., 2013. "Modeling the future costs of carbon capture using experts' elicited probabilities under policy scenarios," Energy, Elsevier, vol. 56(C), pages 218-228.
    4. Gurung, Anup & Van Ginkel, Steven W. & Kang, Woo-Chang & Qambrani, Naveed Ahmed & Oh, Sang-Eun, 2012. "Evaluation of marine biomass as a source of methane in batch tests: A lab-scale study," Energy, Elsevier, vol. 43(1), pages 396-401.
    5. Powell, E.E. & Hill, G.A., 2010. "Carbon dioxide neutral, integrated biofuel facility," Energy, Elsevier, vol. 35(12), pages 4582-4586.
    6. Na, Jeong-Geol & Yi, Bo Eun & Han, Jun Kyu & Oh, You-Kwan & Park, Jong-Ho & Jung, Tae Sung & Han, Sang Sup & Yoon, Hyung Chul & Kim, Jong-Nam & Lee, Hyunjoo & Ko, Chang Hyun, 2012. "Deoxygenation of microalgal oil into hydrocarbon with precious metal catalysts: Optimization of reaction conditions and supports," Energy, Elsevier, vol. 47(1), pages 25-30.
    7. Huang, Hua-jun & Yuan, Xing-zhong & Zhu, Hui-na & Li, Hui & Liu, Yan & Wang, Xue-li & Zeng, Guang-ming, 2013. "Comparative studies of thermochemical liquefaction characteristics of microalgae, lignocellulosic biomass and sewage sludge," Energy, Elsevier, vol. 56(C), pages 52-60.
    8. Tang, Haiying & Abunasser, Nadia & Garcia, M.E.D. & Chen, Meng & Simon Ng, K.Y. & Salley, Steven O., 2011. "Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel," Applied Energy, Elsevier, vol. 88(10), pages 3324-3330.
    9. Hu, Zhiquan & Zheng, Yang & Yan, Feng & Xiao, Bo & Liu, Shiming, 2013. "Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): Product distribution and bio-oil characterization," Energy, Elsevier, vol. 52(C), pages 119-125.
    10. López-González, D. & Valverde, J.L. & Sánchez, P. & Sanchez-Silva, L., 2013. "Characterization of different heat transfer fluids and degradation study by using a pilot plant device operating at real conditions," Energy, Elsevier, vol. 54(C), pages 240-250.
    11. Yuan, Xingzhong & Wang, Jingyu & Zeng, Guangming & Huang, Huajun & Pei, Xiaokai & Li, Hui & Liu, Zhifeng & Cong, Minghui, 2011. "Comparative studies of thermochemical liquefaction characteristics of microalgae using different organic solvents," Energy, Elsevier, vol. 36(11), pages 6406-6412.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    2. Chiu-Mei Kuo & Yu-Ling Sun & Cheng-Han Lin & Chao-Hsu Lin & Hsi-Tien Wu & Chih-Sheng Lin, 2021. "Cultivation and Biorefinery of Microalgae ( Chlorella sp.) for Producing Biofuels and Other Byproducts: A Review," Sustainability, MDPI, vol. 13(23), pages 1-30, December.
    3. Banerjee, Avik & Guria, Chandan & Maiti, Subodh K., 2016. "Fertilizer assisted optimal cultivation of microalgae using response surface method and genetic algorithm for biofuel feedstock," Energy, Elsevier, vol. 115(P1), pages 1272-1290.
    4. Jambo, Siti Azmah & Abdulla, Rahmath & Mohd Azhar, Siti Hajar & Marbawi, Hartinie & Gansau, Jualang Azlan & Ravindra, Pogaku, 2016. "A review on third generation bioethanol feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 756-769.
    5. Seyed Hosseini, Nekoo & Shang, Helen & Scott, John Ashley, 2018. "Optimization of microalgae-sourced lipids production for biodiesel in a top-lit gas-lift bioreactor using response surface methodology," Energy, Elsevier, vol. 146(C), pages 47-56.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. López-González, D. & Fernandez-Lopez, M. & Valverde, J.L. & Sanchez-Silva, L., 2014. "Pyrolysis of three different types of microalgae: Kinetic and evolved gas analysis," Energy, Elsevier, vol. 73(C), pages 33-43.
    2. Xia, Ao & Cheng, Jun & Ding, Lingkan & Lin, Richen & Song, Wenlu & Zhou, Junhu & Cen, Kefa, 2014. "Effects of changes in microbial community on the fermentative production of hydrogen and soluble metabolites from Chlorella pyrenoidosa biomass in semi-continuous operation," Energy, Elsevier, vol. 68(C), pages 982-988.
    3. Maity, Jyoti Prakash & Bundschuh, Jochen & Chen, Chien-Yen & Bhattacharya, Prosun, 2014. "Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives – A mini review," Energy, Elsevier, vol. 78(C), pages 104-113.
    4. Hu, Zhiquan & Zheng, Yang & Yan, Feng & Xiao, Bo & Liu, Shiming, 2013. "Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): Product distribution and bio-oil characterization," Energy, Elsevier, vol. 52(C), pages 119-125.
    5. Lin, Kuang C. & Lin, Yuan-Chung & Hsiao, Yi-Hsing, 2014. "Microwave plasma studies of Spirulina algae pyrolysis with relevance to hydrogen production," Energy, Elsevier, vol. 64(C), pages 567-574.
    6. Leng, Lijian & Li, Hui & Yuan, Xingzhong & Zhou, Wenguang & Huang, Huajun, 2018. "Bio-oil upgrading by emulsification/microemulsification: A review," Energy, Elsevier, vol. 161(C), pages 214-232.
    7. Huang, Hua-jun & Yuan, Xing-zhong & Zhu, Hui-na & Li, Hui & Liu, Yan & Wang, Xue-li & Zeng, Guang-ming, 2013. "Comparative studies of thermochemical liquefaction characteristics of microalgae, lignocellulosic biomass and sewage sludge," Energy, Elsevier, vol. 56(C), pages 52-60.
    8. Lai, Fa-ying & Chang, Yan-chao & Huang, Hua-jun & Wu, Guo-qiang & Xiong, Jiang-bo & Pan, Zi-qian & Zhou, Chun-fei, 2018. "Liquefaction of sewage sludge in ethanol-water mixed solvents for bio-oil and biochar products," Energy, Elsevier, vol. 148(C), pages 629-641.
    9. Chen, Haitao & He, Zhixia & Zhang, Bo & Feng, Huan & Kandasamy, Sabariswaran & Wang, Bin, 2019. "Effects of the aqueous phase recycling on bio-oil yield in hydrothermal liquefaction of Spirulina Platensis, α-cellulose, and lignin," Energy, Elsevier, vol. 179(C), pages 1103-1113.
    10. Xu, Donghai & Lin, Guike & Liu, Liang & Wang, Yang & Jing, Zefeng & Wang, Shuzhong, 2018. "Comprehensive evaluation on product characteristics of fast hydrothermal liquefaction of sewage sludge at different temperatures," Energy, Elsevier, vol. 159(C), pages 686-695.
    11. Isa, Khairuddin Md & Abdullah, Tuan Amran Tuan & Ali, Umi Fazara Md, 2018. "Hydrogen donor solvents in liquefaction of biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1259-1268.
    12. Kumar, Anup & Guria, Chandan & Pathak, Akhilendra K., 2018. "Optimal cultivation towards enhanced algae-biomass and lipid production using Dunaliella tertiolecta for biofuel application and potential CO2 bio-fixation: Effect of nitrogen deficient fertilizer, li," Energy, Elsevier, vol. 148(C), pages 1069-1086.
    13. Galadima, Ahmad & Muraza, Oki, 2014. "Biodiesel production from algae by using heterogeneous catalysts: A critical review," Energy, Elsevier, vol. 78(C), pages 72-83.
    14. Ratha, Sachitra Kumar & Renuka, Nirmal & Abunama, Taher & Rawat, Ismail & Bux, Faizal, 2022. "Hydrothermal liquefaction of algal feedstocks: The effect of biomass characteristics and extraction solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    15. Xu, Donghai & Wang, Yang & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Wu, Zhiqiang, 2019. "Co-hydrothermal liquefaction of microalgae and sewage sludge in subcritical water: Ash effects on bio-oil production," Renewable Energy, Elsevier, vol. 138(C), pages 1143-1151.
    16. Aziz, Muhammad & Oda, Takuya & Kashiwagi, Takao, 2014. "Integration of energy-efficient drying in microalgae utilization based on enhanced process integration," Energy, Elsevier, vol. 70(C), pages 307-316.
    17. Gao, Ying & Wang, Xianhua & Wang, Jun & Li, Xiangpeng & Cheng, Jianjun & Yang, Haiping & Chen, Hanping, 2013. "Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth," Energy, Elsevier, vol. 58(C), pages 376-383.
    18. Saber, Mohammad & Nakhshiniev, Bakhtiyor & Yoshikawa, Kunio, 2016. "A review of production and upgrading of algal bio-oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 918-930.
    19. Tian, Chunyan & Li, Baoming & Liu, Zhidan & Zhang, Yuanhui & Lu, Haifeng, 2014. "Hydrothermal liquefaction for algal biorefinery: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 933-950.
    20. Xiao, Zhihua & Yuan, Xingzhong & Jiang, Longbo & Chen, Xiaohong & Li, Hui & Zeng, Guangming & Leng, Lijian & Wang, Hou & Huang, Huajun, 2015. "Energy recovery and secondary pollutant emission from the combustion of co-pelletized fuel from municipal sewage sludge and wood sawdust," Energy, Elsevier, vol. 91(C), pages 441-450.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:78:y:2014:i:c:p:40-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.