IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i10p3336-3341.html
   My bibliography  Save this article

Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2

Author

Listed:
  • Jiang, Liling
  • Luo, Shengjun
  • Fan, Xiaolei
  • Yang, Zhiman
  • Guo, Rongbo

Abstract

In order to reduce the cost of the production of microalgae for biodiesel, the feasibility of using the mixture of seawater and municipal wastewater as culture medium and CO2 from flue gas for the cultivation of marine microalgae was investigated in this study. Effects of different ratios of municipal wastewater and 15% CO2 aeration on the growth of Nannochloropsis sp. were examined, and lipid accumulation of microalgae was also studied under nitrogen starvation and high light. It was found that optimal growth of microalgae occurred in 50% municipal wastewater, and the growth was further significantly enhanced by aeration with 15% CO2. When Nannochloropsis sp. cells were transferred from the first growth phase to the second lipid accumulation phase under the combination of nitrogen deprivation and high light, both biomass and lipid production of Nannochloropsis sp. were significantly increased. After 12days of the second-phase cultivation, the biomass concentration and total lipid content increased from 0.71 to 2.23g L−1 and 33.8–59.9%, respectively. This study suggests that it is possible to utilize municipal wastewater to replace nutrients in seawater medium and use flue gas to provide CO2 in the cultivation of oil-bearing marine microalgae for biodiesel.

Suggested Citation

  • Jiang, Liling & Luo, Shengjun & Fan, Xiaolei & Yang, Zhiman & Guo, Rongbo, 2011. "Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2," Applied Energy, Elsevier, vol. 88(10), pages 3336-3341.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:10:p:3336-3341
    DOI: 10.1016/j.apenergy.2011.03.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911002133
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.03.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Markou, Giorgos & Georgakakis, Dimitris, 2011. "Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: A review," Applied Energy, Elsevier, vol. 88(10), pages 3389-3401.
    2. Singh, Anoop & Olsen, Stig Irving, 2011. "A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels," Applied Energy, Elsevier, vol. 88(10), pages 3548-3555.
    3. Gao, Chunfang & Zhai, Yan & Ding, Yi & Wu, Qingyu, 2010. "Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides," Applied Energy, Elsevier, vol. 87(3), pages 756-761, March.
    4. Phukan, Mayur M. & Chutia, Rahul S. & Konwar, B.K. & Kataki, R., 2011. "Microalgae Chlorella as a potential bio-energy feedstock," Applied Energy, Elsevier, vol. 88(10), pages 3307-3312.
    5. Tang, Haiying & Abunasser, Nadia & Garcia, M.E.D. & Chen, Meng & Simon Ng, K.Y. & Salley, Steven O., 2011. "Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel," Applied Energy, Elsevier, vol. 88(10), pages 3324-3330.
    6. Amaro, Helena M. & Guedes, A. Catarina & Malcata, F. Xavier, 2011. "Advances and perspectives in using microalgae to produce biodiesel," Applied Energy, Elsevier, vol. 88(10), pages 3402-3410.
    7. Ketheesan, B. & Nirmalakhandan, N., 2011. "Development of a new airlift-driven raceway reactor for algal cultivation," Applied Energy, Elsevier, vol. 88(10), pages 3370-3376.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peralta-Ruiz, Y. & González-Delgado, A.-D. & Kafarov, V., 2013. "Evaluation of alternatives for microalgae oil extraction based on exergy analysis," Applied Energy, Elsevier, vol. 101(C), pages 226-236.
    2. Lucas Reijnders, 2013. "Lipid‐based liquid biofuels from autotrophic microalgae: energetic and environmental performance," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(1), pages 73-85, January.
    3. Cui, Yan & Yuan, Wenqiao, 2013. "Thermodynamic modeling of algal cell–solid substrate interactions," Applied Energy, Elsevier, vol. 112(C), pages 485-492.
    4. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    5. Prajapati, Sanjeev Kumar & Malik, Anushree & Vijay, Virendra Kumar, 2014. "Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion," Applied Energy, Elsevier, vol. 114(C), pages 790-797.
    6. Watanabe, Hideo & Li, Dalin & Nakagawa, Yoshinao & Tomishige, Keiichi & Kaya, Kunimitsu & Watanabe, Makoto M., 2014. "Characterization of oil-extracted residue biomass of Botryococcus braunii as a biofuel feedstock and its pyrolytic behavior," Applied Energy, Elsevier, vol. 132(C), pages 475-484.
    7. Dasgupta, Chitralekha Nag & Suseela, M.R. & Mandotra, S.K. & Kumar, Pankaj & Pandey, Manish K. & Toppo, Kiran & Lone, J.A., 2015. "Dual uses of microalgal biomass: An integrative approach for biohydrogen and biodiesel production," Applied Energy, Elsevier, vol. 146(C), pages 202-208.
    8. El Arroussi, Hicham & Benhima, Redouane & Bennis, Iman & El Mernissi, Najib & Wahby, Imane, 2015. "Improvement of the potential of Dunaliella tertiolecta as a source of biodiesel by auxin treatment coupled to salt stress," Renewable Energy, Elsevier, vol. 77(C), pages 15-19.
    9. Chen, Hui & Wang, Jie & Zheng, Yanli & Zhan, Jiao & He, Chenliu & Wang, Qiang, 2018. "Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation," Applied Energy, Elsevier, vol. 211(C), pages 296-305.
    10. Milano, Jassinnee & Ong, Hwai Chyuan & Masjuki, H.H. & Chong, W.T. & Lam, Man Kee & Loh, Ping Kwan & Vellayan, Viknes, 2016. "Microalgae biofuels as an alternative to fossil fuel for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 180-197.
    11. Jacob, Amita & Xia, Ao & Murphy, Jerry D., 2015. "A perspective on gaseous biofuel production from micro-algae generated from CO2 from a coal-fired power plant," Applied Energy, Elsevier, vol. 148(C), pages 396-402.
    12. Chen, Guanyi & Zhao, Liu & Qi, Yun, 2015. "Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review," Applied Energy, Elsevier, vol. 137(C), pages 282-291.
    13. Cerón-García, M.C. & Macías-Sánchez, M.D. & Sánchez-Mirón, A. & García-Camacho, F. & Molina-Grima, E., 2013. "A process for biodiesel production involving the heterotrophic fermentation of Chlorella protothecoides with glycerol as the carbon source," Applied Energy, Elsevier, vol. 103(C), pages 341-349.
    14. Jazzar, Souhir & Olivares-Carrillo, Pilar & Pérez de los Ríos, Antonia & Marzouki, Mohamed Néjib & Acién-Fernández, Francisco Gabriel & Fernández-Sevilla, José María & Molina-Grima, Emilio & Smaali, I, 2015. "Direct supercritical methanolysis of wet and dry unwashed marine microalgae (Nannochloropsis gaditana) to biodiesel," Applied Energy, Elsevier, vol. 148(C), pages 210-219.
    15. Chen, Wan-Ting & Zhang, Yuanhui & Zhang, Jixiang & Schideman, Lance & Yu, Guo & Zhang, Peng & Minarick, Mitchell, 2014. "Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil," Applied Energy, Elsevier, vol. 128(C), pages 209-216.
    16. Cabanelas, Iago Teles Dominguez & Arbib, Zouhayr & Chinalia, Fábio A. & Souza, Carolina Oliveira & Perales, José A. & Almeida, Paulo Fernando & Druzian, Janice Izabel & Nascimento, Iracema Andrade, 2013. "From waste to energy: Microalgae production in wastewater and glycerol," Applied Energy, Elsevier, vol. 109(C), pages 283-290.
    17. Giostri, A. & Binotti, M. & Macchi, E., 2016. "Microalgae cofiring in coal power plants: Innovative system layout and energy analysis," Renewable Energy, Elsevier, vol. 95(C), pages 449-464.
    18. Daroch, Maurycy & Geng, Shu & Wang, Guangyi, 2013. "Recent advances in liquid biofuel production from algal feedstocks," Applied Energy, Elsevier, vol. 102(C), pages 1371-1381.
    19. José Guillermo Rosas & Natalia Gómez & Jorge Cara-Jiménez & Judith González-Arias & Miguel Ángel Olego & Marta E. Sánchez, 2020. "Evaluation of Joint Management of Pine Wood Waste and Residual Microalgae for Agricultural Application," Sustainability, MDPI, vol. 13(1), pages 1-18, December.
    20. Cheah, Wai Yan & Ling, Tau Chuan & Show, Pau Loke & Juan, Joon Ching & Chang, Jo-Shu & Lee, Duu-Jong, 2016. "Cultivation in wastewaters for energy: A microalgae platform," Applied Energy, Elsevier, vol. 179(C), pages 609-625.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:10:p:3336-3341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.