IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v69y2014icp25-33.html
   My bibliography  Save this article

Optimal capacity and expansion planning methodology of PV and battery in smart house

Author

Listed:
  • Yoza, Akihiro
  • Yona, Atsushi
  • Senjyu, Tomonobu
  • Funabashi, Toshihisa

Abstract

Due to the depletion of energy resources and global warming, renewable energies such as the solar collector (SC) and photovoltaic generation (PV), are gaining more widespread use in residential areas. In Japan, incentive to install these units for consumers is provided by governmental support with the introduction of feed-in tariffs (FIT) and governmental subsidies. Thus, it is possible to reduce electricity cost in houses using time-of-use (TOU) price and to get benefit from selling power generated by PV. Furthermore, investment costs of PV and battery systems are decreasing year by year; on however, the price of purchased power for consumers is increasing and the selling price by FIT is decreasing annually. Hence, it is important to reveal which year, at what capacity, and which system and appliances are best choices for the consumer. In this paper, an expansion planning model of PV and battery systems for the smart house is presented. The expansion planning period is 20 years and ranges from 2015 to 2035. The proposed method clarifies the optimal installation year, capacity and appliances during the twenty year period considering variable characteristics such as investment cost, selling price and purchasing price which change year by year.

Suggested Citation

  • Yoza, Akihiro & Yona, Atsushi & Senjyu, Tomonobu & Funabashi, Toshihisa, 2014. "Optimal capacity and expansion planning methodology of PV and battery in smart house," Renewable Energy, Elsevier, vol. 69(C), pages 25-33.
  • Handle: RePEc:eee:renene:v:69:y:2014:i:c:p:25-33
    DOI: 10.1016/j.renene.2014.03.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811400175X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.03.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alishahi, Ehsan & Moghaddam, Mohsen P. & Sheikh-El-Eslami, Mohammad K., 2011. "An investigation on the impacts of regulatory interventions on wind power expansion in generation planning," Energy Policy, Elsevier, vol. 39(8), pages 4614-4623, August.
    2. Yabe, Kuniaki & Shinoda, Yukio & Seki, Tomomichi & Tanaka, Hideo & Akisawa, Atsushi, 2012. "Market penetration speed and effects on CO2 reduction of electric vehicles and plug-in hybrid electric vehicles in Japan," Energy Policy, Elsevier, vol. 45(C), pages 529-540.
    3. Shafiee, Shahriar & Topal, Erkan, 2010. "A long-term view of worldwide fossil fuel prices," Applied Energy, Elsevier, vol. 87(3), pages 988-1000, March.
    4. Kim, Kyoung-Kuk & Lee, Chi-Guhn, 2012. "Evaluation and optimization of feed-in tariffs," Energy Policy, Elsevier, vol. 49(C), pages 192-203.
    5. Tanaka, Kenichi & Yoza, Akihiro & Ogimi, Kazuki & Yona, Atsushi & Senjyu, Tomonobu & Funabashi, Toshihisa & Kim, Chul-Hwan, 2012. "Optimal operation of DC smart house system by controllable loads based on smart grid topology," Renewable Energy, Elsevier, vol. 39(1), pages 132-139.
    6. Candelise, Chiara & Winskel, Mark & Gross, Robert J.K., 2013. "The dynamics of solar PV costs and prices as a challenge for technology forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 96-107.
    7. Wirl, Franz, 1989. "Optimal capacity expansion of hydro power plants," Energy Economics, Elsevier, vol. 11(2), pages 133-136, April.
    8. Grosjean, Camille & Miranda, Pamela Herrera & Perrin, Marion & Poggi, Philippe, 2012. "Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1735-1744.
    9. Doherty, Ronan & O'Malley, Mark, 2011. "The efficiency of Ireland's Renewable Energy Feed-In Tariff (REFIT) for wind generation," Energy Policy, Elsevier, vol. 39(9), pages 4911-4919, September.
    10. de La Tour, Arnaud & Glachant, Matthieu & Ménière, Yann, 2013. "Predicting the costs of photovoltaic solar modules in 2020 using experience curve models," Energy, Elsevier, vol. 62(C), pages 341-348.
    11. Sharan, Ishan & Balasubramanian, R., 2012. "Integrated generation and transmission expansion planning including power and fuel transportation constraints," Energy Policy, Elsevier, vol. 43(C), pages 275-284.
    12. Cherrington, R. & Goodship, V. & Longfield, A. & Kirwan, K., 2013. "The feed-in tariff in the UK: A case study focus on domestic photovoltaic systems," Renewable Energy, Elsevier, vol. 50(C), pages 421-426.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sadeghi, Hadi & Rashidinejad, Masoud & Abdollahi, Amir, 2017. "A comprehensive sequential review study through the generation expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1369-1394.
    2. Shen, Pengyuan & Braham, William & Yi, Yunkyu & Eaton, Eric, 2019. "Rapid multi-objective optimization with multi-year future weather condition and decision-making support for building retrofit," Energy, Elsevier, vol. 172(C), pages 892-912.
    3. Irshad, Ahmad Shah & Samadi, Wais Khan & Fazli, Agha Mohammad & Noori, Abdul Ghani & Amin, Ahmad Shah & Zakir, Mohammad Naseer & Bakhtyal, Irfan Ahmad & Karimi, Bashir Ahmad & Ludin, Gul Ahmad & Senjy, 2023. "Resilience and reliable integration of PV-wind and hydropower based 100% hybrid renewable energy system without any energy storage system for inaccessible area electrification," Energy, Elsevier, vol. 282(C).
    4. Maleki, Akbar & Ameri, Mehran & Keynia, Farshid, 2015. "Scrutiny of multifarious particle swarm optimization for finding the optimal size of a PV/wind/battery hybrid system," Renewable Energy, Elsevier, vol. 80(C), pages 552-563.
    5. Franco, Alessandro & Fantozzi, Fabio, 2016. "Experimental analysis of a self consumption strategy for residential building: The integration of PV system and geothermal heat pump," Renewable Energy, Elsevier, vol. 86(C), pages 1075-1085.
    6. Baigali Erdenebat & Naomitsu Urasaki & Sergelen Byambaa, 2022. "A Strategy for Grid-Connected PV-Battery System of Mongolian Ger," Energies, MDPI, vol. 15(5), pages 1-13, March.
    7. Chandra Ade Irawan & Peter S. Hofman & Hing Kai Chan & Antony Paulraj, 2022. "A stochastic programming model for an energy planning problem: formulation, solution method and application," Annals of Operations Research, Springer, vol. 311(2), pages 695-730, April.
    8. Kaschub, Thomas & Jochem, Patrick & Fichtner, Wolf, 2016. "Solar energy storage in German households: profitability, load changes and flexibility," Energy Policy, Elsevier, vol. 98(C), pages 520-532.
    9. Sarhan, Ameen & Hizam, Hashim & Mariun, Norman & Ya'acob, M.E., 2019. "An improved numerical optimization algorithm for sizing and configuration of standalone photo-voltaic system components in Yemen," Renewable Energy, Elsevier, vol. 134(C), pages 1434-1446.
    10. Yasuaki Miyazato & Hayato Tahara & Kosuke Uchida & Cirio Celestino Muarapaz & Abdul Motin Howlader & Tomonobu Senjyu, 2016. "Multi-Objective Optimization for Smart House Applied Real Time Pricing Systems," Sustainability, MDPI, vol. 8(12), pages 1-22, December.
    11. Wang, Ge & Zhang, Qi & Li, Hailong & McLellan, Benjamin C. & Chen, Siyuan & Li, Yan & Tian, Yulu, 2017. "Study on the promotion impact of demand response on distributed PV penetration by using non-cooperative game theoretical analysis," Applied Energy, Elsevier, vol. 185(P2), pages 1869-1878.
    12. Shen, Pengyuan & Braham, William & Yi, Yunkyu, 2018. "Development of a lightweight building simulation tool using simplified zone thermal coupling for fast parametric study," Applied Energy, Elsevier, vol. 223(C), pages 188-214.
    13. Akbar Maleki & Marc A. Rosen & Fathollah Pourfayaz, 2017. "Optimal Operation of a Grid-Connected Hybrid Renewable Energy System for Residential Applications," Sustainability, MDPI, vol. 9(8), pages 1-20, July.
    14. Li, Yanxue & Gao, Weijun & Ruan, Yingjun, 2018. "Performance investigation of grid-connected residential PV-battery system focusing on enhancing self-consumption and peak shaving in Kyushu, Japan," Renewable Energy, Elsevier, vol. 127(C), pages 514-523.
    15. Shen, Pengyuan & Lior, Noam, 2016. "Vulnerability to climate change impacts of present renewable energy systems designed for achieving net-zero energy buildings," Energy, Elsevier, vol. 114(C), pages 1288-1305.
    16. Agata Mielcarek & Bartosz Ceran & Jakub Jurasz, 2023. "The Impact of Degradation of PV/Battery-Independent System Components on Technical and Economic Indicators and Sizing Process," Energies, MDPI, vol. 16(18), pages 1-32, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ge & Zhang, Qi & Li, Hailong & McLellan, Benjamin C. & Chen, Siyuan & Li, Yan & Tian, Yulu, 2017. "Study on the promotion impact of demand response on distributed PV penetration by using non-cooperative game theoretical analysis," Applied Energy, Elsevier, vol. 185(P2), pages 1869-1878.
    2. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
    3. Jeon, Chanwoong & Lee, Jeongjin & Shin, Juneseuk, 2015. "Optimal subsidy estimation method using system dynamics and the real option model: Photovoltaic technology case," Applied Energy, Elsevier, vol. 142(C), pages 33-43.
    4. Lafond, François & Bailey, Aimee Gotway & Bakker, Jan David & Rebois, Dylan & Zadourian, Rubina & McSharry, Patrick & Farmer, J. Doyne, 2018. "How well do experience curves predict technological progress? A method for making distributional forecasts," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 104-117.
    5. Paul Westacott & Chiara Candelise, 2016. "A Novel Geographical Information Systems Framework to Characterize Photovoltaic Deployment in the UK: Initial Evidence," Energies, MDPI, vol. 9(1), pages 1-20, January.
    6. Zafirakis, D. & Chalvatzis, K. & Kaldellis, J.K., 2013. "“Socially just” support mechanisms for the promotion of renewable energy sources in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 478-493.
    7. Chiara Modanese & Hannu S. Laine & Toni P. Pasanen & Hele Savin & Joshua M. Pearce, 2018. "Economic Advantages of Dry-Etched Black Silicon in Passivated Emitter Rear Cell (PERC) Photovoltaic Manufacturing," Energies, MDPI, vol. 11(9), pages 1-18, September.
    8. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Chen, H.T., 2017. "Optimal design of subsidy to stimulate renewable energy investments: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 873-883.
    9. Oliva H, Sebastian, 2018. "Assessing the growth of residential PV exports with energy efficiency and the opportunity for local generation network credits," Renewable Energy, Elsevier, vol. 121(C), pages 451-459.
    10. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    11. Ouedraogo, Bachir I. & Kouame, S. & Azoumah, Y. & Yamegueu, D., 2015. "Incentives for rural off grid electrification in Burkina Faso using LCOE," Renewable Energy, Elsevier, vol. 78(C), pages 573-582.
    12. Ferreira, Agmar & Kunh, Sheila S. & Fagnani, Kátia C. & De Souza, Tiago A. & Tonezer, Camila & Dos Santos, Geocris Rodrigues & Coimbra-Araújo, Carlos H., 2018. "Economic overview of the use and production of photovoltaic solar energy in brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 181-191.
    13. Oliva H., Sebastian, 2017. "Residential energy efficiency and distributed generation - Natural partners or competition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 932-940.
    14. Sascha Samadi, 2016. "A Review of Factors Influencing the Cost Development of Electricity Generation Technologies," Energies, MDPI, vol. 9(11), pages 1-25, November.
    15. Buckman, Greg & Sibley, Jon & Bourne, Richard, 2014. "The large-scale solar feed-in tariff reverse auction in the Australian Capital Territory, Australia," Energy Policy, Elsevier, vol. 72(C), pages 14-22.
    16. Niall Farrell, Mel T. Devine, William T. Lee, James P. Gleeson, and Sean Lyons, 2017. "Specifying An Efficient Renewable Energy Feed-in Tariff," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    17. Barbosa, Luciana & Ferrão, Paulo & Rodrigues, Artur & Sardinha, Alberto, 2018. "Feed-in tariffs with minimum price guarantees and regulatory uncertainty," Energy Economics, Elsevier, vol. 72(C), pages 517-541.
    18. Gacitua, L. & Gallegos, P. & Henriquez-Auba, R. & Lorca, Á. & Negrete-Pincetic, M. & Olivares, D. & Valenzuela, A. & Wenzel, G., 2018. "A comprehensive review on expansion planning: Models and tools for energy policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 346-360.
    19. Sadeghi, Hadi & Rashidinejad, Masoud & Abdollahi, Amir, 2017. "A comprehensive sequential review study through the generation expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1369-1394.
    20. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:69:y:2014:i:c:p:25-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.