IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v121y2018icp451-459.html
   My bibliography  Save this article

Assessing the growth of residential PV exports with energy efficiency and the opportunity for local generation network credits

Author

Listed:
  • Oliva H, Sebastian

Abstract

An unprecedented expansion of household photovoltaic (PV) systems coincided with a marked decline in household electricity demand in several jurisdictions around the world. This was driven by falling PV prices and the installation of more energy efficient residential appliances (EE). However, existing net metering arrangements value self-consumption of PV far more than PV exports to the grid. As a result, energy savings from EE that considerably reduce household PV self-consumption could also reduce the value of PV systems. Since PV exports generally utilise only part of the distribution grid, ‘local generation network credits’ (LGNCs) have been proposed to increase the value of PV exports. LGNCs also have the potential to improve the combined value of PV and EE. Given the large variability of the household PV generation and load and the time-varying structure of LGNCs, an empirical probabilistic method is proposed in this paper in order to assess the combined PV-EE value with the LGNC arrangements. The results show how simplistic feed-in tariffs have an adverse impact on the combined PV-EE value and how LGNCs can assist in removing barriers to the combined uptake of these two key clean energy technologies.

Suggested Citation

  • Oliva H, Sebastian, 2018. "Assessing the growth of residential PV exports with energy efficiency and the opportunity for local generation network credits," Renewable Energy, Elsevier, vol. 121(C), pages 451-459.
  • Handle: RePEc:eee:renene:v:121:y:2018:i:c:p:451-459
    DOI: 10.1016/j.renene.2018.01.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118300090
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.01.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oliva H., Sebastian, 2017. "Residential energy efficiency and distributed generation - Natural partners or competition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 932-940.
    2. Hammond, Geoffrey P. & Harajli, Hassan A. & Jones, Craig I. & Winnett, Adrian B., 2012. "Whole systems appraisal of a UK Building Integrated Photovoltaic (BIPV) system: Energy, environmental, and economic evaluations," Energy Policy, Elsevier, vol. 40(C), pages 219-230.
    3. Burns, John Edward & Kang, Jin-Su, 2012. "Comparative economic analysis of supporting policies for residential solar PV in the United States: Solar Renewable Energy Credit (SREC) potential," Energy Policy, Elsevier, vol. 44(C), pages 217-225.
    4. Bazilian, Morgan & Onyeji, Ijeoma & Liebreich, Michael & MacGill, Ian & Chase, Jennifer & Shah, Jigar & Gielen, Dolf & Arent, Doug & Landfear, Doug & Zhengrong, Shi, 2013. "Re-considering the economics of photovoltaic power," Renewable Energy, Elsevier, vol. 53(C), pages 329-338.
    5. Severin Borenstein, 2012. "The Private and Public Economics of Renewable Electricity Generation," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 67-92, Winter.
    6. Akorede, Mudathir Funsho & Hizam, Hashim & Pouresmaeil, Edris, 2010. "Distributed energy resources and benefits to the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 724-734, February.
    7. Colmenar-Santos, Antonio & Campíñez-Romero, Severo & Pérez-Molina, Clara & Castro-Gil, Manuel, 2012. "Profitability analysis of grid-connected photovoltaic facilities for household electricity self-sufficiency," Energy Policy, Elsevier, vol. 51(C), pages 749-764.
    8. Muhammad-Sukki, Firdaus & Abu-Bakar, Siti Hawa & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & Ramirez-Iniguez, Roberto & McMeekin, Scott G. & Stewart, Brian G. & Sarmah, Nabin & Mallick, Tapas Kumar & , 2014. "Feed-in tariff for solar photovoltaic: The rise of Japan," Renewable Energy, Elsevier, vol. 68(C), pages 636-643.
    9. McHenry, Mark P., 2012. "Are small-scale grid-connected photovoltaic systems a cost-effective policy for lowering electricity bills and reducing carbon emissions? A technical, economic, and carbon emission analysis," Energy Policy, Elsevier, vol. 45(C), pages 64-72.
    10. Candelise, Chiara & Winskel, Mark & Gross, Robert J.K., 2013. "The dynamics of solar PV costs and prices as a challenge for technology forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 96-107.
    11. Martin, Nigel & Rice, John, 2013. "The solar photovoltaic feed-in tariff scheme in New South Wales, Australia," Energy Policy, Elsevier, vol. 61(C), pages 697-706.
    12. Talavera, D.L. & Nofuentes, G. & Aguilera, J., 2010. "The internal rate of return of photovoltaic grid-connected systems: A comprehensive sensitivity analysis," Renewable Energy, Elsevier, vol. 35(1), pages 101-111.
    13. Cherrington, R. & Goodship, V. & Longfield, A. & Kirwan, K., 2013. "The feed-in tariff in the UK: A case study focus on domestic photovoltaic systems," Renewable Energy, Elsevier, vol. 50(C), pages 421-426.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Castaneda, Monica & Zapata, Sebastian & Cherni, Judith & Aristizabal, Andres J. & Dyner, Isaac, 2020. "The long-term effects of cautious feed-in tariff reductions on photovoltaic generation in the UK residential sector," Renewable Energy, Elsevier, vol. 155(C), pages 1432-1443.
    2. Methee Srikranjanapert & Siripha Junlakarn & Naebboon Hoonchareon, 2021. "How an Integration of Home Energy Management and Battery System Affects the Economic Benefits of Residential PV System Owners in Thailand," Sustainability, MDPI, vol. 13(5), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliva H., Sebastian, 2017. "Residential energy efficiency and distributed generation - Natural partners or competition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 932-940.
    2. Oliva H., Sebastian & MacGill, Iain & Passey, Rob, 2016. "Assessing the short-term revenue impacts of residential PV systems on electricity customers, retailers and network service providers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1494-1505.
    3. Rutovitz, Jay & Oliva H., Sebastian & McIntosh, Lawrence & Langham, Ed & Teske, Sven & Atherton, Alison & Kelly, Scott, 2018. "Local network credits and local electricity trading: Results of virtual trials and the policy implications," Energy Policy, Elsevier, vol. 120(C), pages 324-334.
    4. Oliva H., Sebastian & Passey, Rob & Abdullah, Md Abu, 2019. "A semi-empirical financial assessment of combining residential photovoltaics, energy efficiency and battery storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 206-214.
    5. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
    6. Riccardo Squatrito & Filippo Sgroi & Salvatore Tudisca & Anna Maria Di Trapani & Riccardo Testa, 2014. "Post Feed-in Scheme Photovoltaic System Feasibility Evaluation in Italy: Sicilian Case Studies," Energies, MDPI, vol. 7(11), pages 1-19, November.
    7. Burtt, D. & Dargusch, P., 2015. "The cost-effectiveness of household photovoltaic systems in reducing greenhouse gas emissions in Australia: Linking subsidies with emission reductions," Applied Energy, Elsevier, vol. 148(C), pages 439-448.
    8. Briguglio, Marie & Formosa, Glenn, 2017. "When households go solar: Determinants of uptake of a Photovoltaic Scheme and policy insights," Energy Policy, Elsevier, vol. 108(C), pages 154-162.
    9. Zbigniew Brodziński & Katarzyna Brodzińska & Mikołaj Szadziun, 2021. "Photovoltaic Farms—Economic Efficiency of Investments in North-East Poland," Energies, MDPI, vol. 14(8), pages 1-17, April.
    10. Duman, A. Can & Güler, Önder, 2020. "Economic analysis of grid-connected residential rooftop PV systems in Turkey," Renewable Energy, Elsevier, vol. 148(C), pages 697-711.
    11. Paul Westacott & Chiara Candelise, 2016. "A Novel Geographical Information Systems Framework to Characterize Photovoltaic Deployment in the UK: Initial Evidence," Energies, MDPI, vol. 9(1), pages 1-20, January.
    12. Wiebe, Kirsten S. & Lutz, Christian, 2016. "Endogenous technological change and the policy mix in renewable power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 739-751.
    13. La Monaca, Sarah & Ryan, Lisa, 2017. "Solar PV where the sun doesn’t shine: Estimating the economic impacts of support schemes for residential PV with detailed net demand profiling," Energy Policy, Elsevier, vol. 108(C), pages 731-741.
    14. Kenneth Gillingham, Hao Deng, Ryan Wiser, Naim Darghouth, Gregory Nemet, Galen Barbose, Varun Rai, and Changgui Dong, 2016. "Deconstructing Solar Photovoltaic Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    15. Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    16. Bistline, John E. & Comello, Stephen D. & Sahoo, Anshuman, 2018. "Managerial flexibility in levelized cost measures: A framework for incorporating uncertainty in energy investment decisions," Energy, Elsevier, vol. 151(C), pages 211-225.
    17. Zhi, Qiang & Sun, Honghang & Li, Yanxi & Xu, Yurui & Su, Jun, 2014. "China’s solar photovoltaic policy: An analysis based on policy instruments," Applied Energy, Elsevier, vol. 129(C), pages 308-319.
    18. Yu, Hyun Jin Julie, 2018. "A prospective economic assessment of residential PV self-consumption with batteries and its systemic effects: The French case in 2030," Energy Policy, Elsevier, vol. 113(C), pages 673-687.
    19. Mundada, Aishwarya S. & Shah, Kunal K. & Pearce, J.M., 2016. "Levelized cost of electricity for solar photovoltaic, battery and cogen hybrid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 692-703.
    20. Coria, Gustavo & Penizzotto, Franco & Pringles, Rolando, 2019. "Economic analysis of photovoltaic projects: The Argentinian renewable generation policy for residential sectors," Renewable Energy, Elsevier, vol. 133(C), pages 1167-1177.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:121:y:2018:i:c:p:451-459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.