IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i12p3367-3372.html
   My bibliography  Save this article

Fermentative production of hydrogen from cassava processing wastewater by Clostridium acetobutylicum

Author

Listed:
  • Cappelletti, Bianca Martins
  • Reginatto, Valeria
  • Amante, Edna Regina
  • Antônio, Regina Vasconcellos

Abstract

This work reports on the effect of initial substrate concentration on COD consumption, pH, and H2 production during cassava processing wastewater fermentation by Clostridium acetobutylicum ATCC 824. Five initial COD wastewater concentrations, namely 5.0, 7.5, 10.7, 15.0, and 30.0 g/L, were used. The results showed that higher substrate concentrations (30.0 and 15.0 COD/L) led to lower H2 yield as well as less efficient substrate conversion into H2. On the other hand, initial COD concentrations of 10.7, 7.5 and 5 g/L furnished 1.34, 1.2 and 2.41 mol H2/mol glucose, with efficiency of glucose conversion into H2 of 34, 30, and 60% (mol/mol), respectively. These results demonstrate that cassava processing wastewater, a highly polluting effluent, can be successfully employed as substrate for H2 production by C. acetobutylicum at lower COD concentrations.

Suggested Citation

  • Cappelletti, Bianca Martins & Reginatto, Valeria & Amante, Edna Regina & Antônio, Regina Vasconcellos, 2011. "Fermentative production of hydrogen from cassava processing wastewater by Clostridium acetobutylicum," Renewable Energy, Elsevier, vol. 36(12), pages 3367-3372.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:12:p:3367-3372
    DOI: 10.1016/j.renene.2011.05.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111002412
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.05.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Ming-Der & Chao, Yu-Chieh & Lin, Yun-Huin & Lu, Wen-Chang & Lee, Hom-Ti, 2009. "Immobilized biofilm used as seeding source in batch biohydrogen fermentation," Renewable Energy, Elsevier, vol. 34(8), pages 1969-1972.
    2. Peilei Fan, 2009. ". By Yu Zhou," Economic Geography, Taylor & Francis Journals, vol. 85(3), pages 342-344, July.
    3. Shi, Xian-Yang & Jin, Da-Wei & Sun, Qing-Ye & Li, Wen-Wei, 2010. "Optimization of conditions for hydrogen production from brewery wastewater by anaerobic sludge using desirability function approach," Renewable Energy, Elsevier, vol. 35(7), pages 1493-1498.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Okudoh, Vincent & Trois, Cristina & Workneh, Tilahun & Schmidt, Stefan, 2014. "The potential of cassava biomass and applicable technologies for sustainable biogas production in South Africa: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1035-1052.
    2. Antony V. Samrot & Deenadhayalan Rajalakshmi & Mahendran Sathiyasree & Subramanian Saigeetha & Kasirajan Kasipandian & Nachiyar Valli & Nellore Jayshree & Pandurangan Prakash & Nagarajan Shobana, 2023. "A Review on Biohydrogen Sources, Production Routes, and Its Application as a Fuel Cell," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    3. Prabakar, Desika & Manimudi, Varshini T. & Suvetha K, Subha & Sampath, Swetha & Mahapatra, Durga Madhab & Rajendran, Karthik & Pugazhendhi, Arivalagan, 2018. "Advanced biohydrogen production using pretreated industrial waste: Outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 306-324.
    4. Mahato, Rabindra Kumar & Kumar, Dharmendhar & Rajagopalan, Gobinath, 2020. "Biohydrogen production from fruit waste by Clostridium strain BOH3," Renewable Energy, Elsevier, vol. 153(C), pages 1368-1377.
    5. Azman, Nadia Farhana & Abdeshahian, Peyman & Kadier, Abudukeremu & Shukor, Hafiza & Al-Shorgani, Najeeb Kaid Nasser & Hamid, Aidil Abdul & Kalil, Mohd Sahaid, 2016. "Utilization of palm kernel cake as a renewable feedstock for fermentative hydrogen production," Renewable Energy, Elsevier, vol. 93(C), pages 700-708.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Xian-Yang & Yu, Han-Qing, 2016. "Simultaneous metabolism of benzoate and photobiological hydrogen production by Lyngbya sp," Renewable Energy, Elsevier, vol. 95(C), pages 474-477.
    2. Oliveira, A.S. & Baeza, J.A. & Garcia, D. & Saenz de Miera, B. & Calvo, L. & Rodriguez, J.J. & Gilarranz, M.A., 2020. "Effect of basicity in the aqueous phase reforming of brewery wastewater for H2 production," Renewable Energy, Elsevier, vol. 148(C), pages 889-896.
    3. King-Wah Chiu & Toshiaki Nakano & Kuang-Den Chen & Li-Wen Hsu & Chia-Yun Lai & Ching-Yin Huang & Yu-Fan Cheng & Shigeru Goto & Chao-Long Chen, 2015. "Repeated-Measures Implication of Hepatocellular Carcinoma Biomarkers in Living Donor Liver Transplantation," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-12, May.
    4. Azwar, M.Y. & Hussain, M.A. & Abdul-Wahab, A.K., 2014. "Development of biohydrogen production by photobiological, fermentation and electrochemical processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 158-173.
    5. Hosseinzadeh, Ahmad & Zhou, John L. & Li, Xiaowei & Afsari, Morteza & Altaee, Ali, 2022. "Techno-economic and environmental impact assessment of hydrogen production processes using bio-waste as renewable energy resource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Xiaohua Liu & Yongjing Lin & Sa Zhou & Stafford Sheehan & Dunwei Wang, 2010. "Complex Nanostructures: Synthesis and Energetic Applications," Energies, MDPI, vol. 3(3), pages 1-16, February.
    7. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    8. Zheng, Longyu & Li, Qing & Zhang, Jibin & Yu, Ziniu, 2012. "Double the biodiesel yield: Rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production," Renewable Energy, Elsevier, vol. 41(C), pages 75-79.
    9. Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).
    10. Patel, Sanjay K.S. & Das, Devashish & Kim, Sun Chang & Cho, Byung-Kwan & Kalia, Vipin Chandra & Lee, Jung-Kul, 2021. "Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    11. Yang, Sen & Li, Qing & Gao, Yang & Zheng, Longyu & Liu, Ziduo, 2014. "Biodiesel production from swine manure via housefly larvae (Musca domestica L.)," Renewable Energy, Elsevier, vol. 66(C), pages 222-227.
    12. Fariha Kanwal & Angel A. J. Torriero, 2022. "Biohydrogen—A Green Fuel for Sustainable Energy Solutions," Energies, MDPI, vol. 15(20), pages 1-20, October.
    13. Niño-Navarro, C. & Chairez, I. & Christen, P. & Canul-Chan, M. & García-Peña, E.I., 2020. "Enhanced hydrogen production by a sequential dark and photo fermentation process: Effects of initial feedstock composition, dilution and microbial population," Renewable Energy, Elsevier, vol. 147(P1), pages 924-936.
    14. Chen, Sheng-Jie & Chen, Xiong & Hu, Bin-Bin & Wei, Ming-Yang & Zhu, Ming-Jun, 2023. "Efficient hydrogen production from sugarcane bagasse and food waste by thermophilic clostridiales consortium and Fe–Mn impregnated biochars," Renewable Energy, Elsevier, vol. 211(C), pages 166-178.
    15. Siad, Si Mokrane & Iacobellis, Vito & Zdruli, Pandi & Gioia, Andrea & Stavi, Ilan & Hoogenboom, Gerrit, 2019. "A review of coupled hydrologic and crop growth models," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:12:p:3367-3372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.