IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i3p727-730.html
   My bibliography  Save this article

The use of deep water cooling systems: Two Canadian examples

Author

Listed:
  • Newman, Lenore
  • Herbert, Yuill

Abstract

Deep water cooling involves using naturally cold water as a heat sink in a heat exchange system, eliminating the need for conventional air conditioning. The cold water is drawn from near the bottom or below the thermocline of a nearby water body. In this study Canadian deep water cooling systems in Halifax, Nova Scotia and Toronto, Ontario were documented. The expected economic and environmental benefits were realized, but barriers to large-scale adoption of the technology were apparent. This technology requires that a client with a large cooling need is near a deep, cold body of water, and payback times vary depending on the site. The public–private partnership approach proved to be beneficial in these two examples, and the Toronto approach in which many buildings are serviced at once by combining municipal pumping capacity can deliver cost savings on a shorter time span. Deep water cooling represents a successful example of a niche accumulation process and an example of electricity demand displacement. Many other locations in which heavy air conditioning users are located next to deep, cold water bodies could use this technology; several such sites exist in Canadian urban areas.

Suggested Citation

  • Newman, Lenore & Herbert, Yuill, 2009. "The use of deep water cooling systems: Two Canadian examples," Renewable Energy, Elsevier, vol. 34(3), pages 727-730.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:3:p:727-730
    DOI: 10.1016/j.renene.2008.04.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148108001936
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.04.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    2. Raven, Rob, 2007. "Niche accumulation and hybridisation strategies in transition processes towards a sustainable energy system: An assessment of differences and pitfalls," Energy Policy, Elsevier, vol. 35(4), pages 2390-2400, April.
    3. Li, Xianguo, 2005. "Diversification and localization of energy systems for sustainable development and energy security," Energy Policy, Elsevier, vol. 33(17), pages 2237-2243, November.
    4. Vermeulen, Walter J.V. & Hovens, Jeroen, 2006. "Competing explanations for adopting energy innovations for new office buildings," Energy Policy, Elsevier, vol. 34(17), pages 2719-2735, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Østergaard, Poul Alberg & Werner, Sven & Dyrelund, Anders & Lund, Henrik & Arabkoohsar, Ahmad & Sorknæs, Peter & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Mathiesen, Brian Vad, 2022. "The four generations of district cooling - A categorization of the development in district cooling from origin to future prospect," Energy, Elsevier, vol. 253(C).
    2. Patryk Antoszewski & Dariusz Świerk & Michał Krzyżaniak, 2020. "Statistical Review of Quality Parameters of Blue-Green Infrastructure Elements Important in Mitigating the Effect of the Urban Heat Island in the Temperate Climate (C) Zone," IJERPH, MDPI, vol. 17(19), pages 1-36, September.
    3. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    4. Ali Fahrettin Kuyuk & Seyed Ali Ghoreishi-Madiseh & Agus P. Sasmito & Ferri Hassani, 2019. "Designing a Large-Scale Lake Cooling System for an Ultra-Deep Mine: A Canadian Case Study," Energies, MDPI, vol. 12(5), pages 1-18, March.
    5. Elías-Maxil, J.A. & van der Hoek, Jan Peter & Hofman, Jan & Rietveld, Luuk, 2014. "Energy in the urban water cycle: Actions to reduce the total expenditure of fossil fuels with emphasis on heat reclamation from urban water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 808-820.
    6. Li, Yu & Rezgui, Yacine & Zhu, Hanxing, 2017. "District heating and cooling optimization and enhancement – Towards integration of renewables, storage and smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 281-294.
    7. Buhagiar, Daniel & Sant, Tonio & Micallef, Christopher & Farrugia, Robert N., 2015. "Improving the energy yield from an open loop hydraulic offshore turbine through deep sea water extraction and alternative control schemes," Energy, Elsevier, vol. 84(C), pages 344-356.
    8. Liu, Y. & Qin, X.S. & Chiew, Y.M., 2013. "Investigation on potential applicability of subsurface cooling in Singapore," Applied Energy, Elsevier, vol. 103(C), pages 197-206.
    9. Sorranat Ratchawang & Srilert Chotpantarat & Sasimook Chokchai & Isao Takashima & Youhei Uchida & Punya Charusiri, 2022. "A Review of Ground Source Heat Pump Application for Space Cooling in Southeast Asia," Energies, MDPI, vol. 15(14), pages 1-18, July.
    10. Jiqing Lin & Wufa Yang & Kunyong Yu & Jianwei Geng & Jian Liu, 2023. "Construction of Water Corridors for Mitigation of Urban Heat Island Effect," Land, MDPI, vol. 12(2), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Palm, Alvar, 2022. "Innovation systems for technology diffusion: An analytical framework and two case studies," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    2. Sanya Carley & Richard Andrews, 2012. "Creating a sustainable U.S. electricity sector: the question of scale," Policy Sciences, Springer;Society of Policy Sciences, vol. 45(2), pages 97-121, June.
    3. Pinkse, Jonatan & van den Buuse, Daniel, 2012. "The development and commercialization of solar PV technology in the oil industry," Energy Policy, Elsevier, vol. 40(C), pages 11-20.
    4. Zbysław Dobrowolski, 2021. "Energy and Local Safety: How the Administration Limits Energy Security," Energies, MDPI, vol. 14(16), pages 1-11, August.
    5. Andrew Cheon & Johannes Urpelainen, 2013. "How do Competing Interest Groups Influence Environmental Policy? The Case of Renewable Electricity in Industrialized Democracies, 1989–2007," Political Studies, Political Studies Association, vol. 61(4), pages 874-897, December.
    6. Papachristos, George & Adamides, Emmanuel, 2016. "A retroductive systems-based methodology for socio-technical transitions research," Technological Forecasting and Social Change, Elsevier, vol. 108(C), pages 1-14.
    7. Turnheim, Bruno & Nykvist, Björn, 2019. "Opening up the feasibility of sustainability transitions pathways (STPs): Representations, potentials, and conditions," Research Policy, Elsevier, vol. 48(3), pages 775-788.
    8. Nathalie Lazaric & Kevin Maréchal, 2010. "Overcoming inertia: insights from evolutionary economics into improved energy and climate policy," Post-Print hal-00452205, HAL.
    9. Pesch, Udo, 2015. "Tracing discursive space: Agency and change in sustainability transitions," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 379-388.
    10. Carley, Sanya, 2011. "Historical analysis of U.S. electricity markets: Reassessing carbon lock-in," Energy Policy, Elsevier, vol. 39(2), pages 720-732, February.
    11. Kevin Maréchal & Hélène Aubaret-Joachain & Jean-Paul Ledant, 2008. "The influence of Economics on agricultural systems: an evolutionary and ecological perspective," Working Papers CEB 08-028.RS, ULB -- Universite Libre de Bruxelles.
    12. Safarzyńska, Karolina & Frenken, Koen & van den Bergh, Jeroen C.J.M., 2012. "Evolutionary theorizing and modeling of sustainability transitions," Research Policy, Elsevier, vol. 41(6), pages 1011-1024.
    13. van der Laak, W.W.M. & Raven, R.P.J.M. & Verbong, G.P.J., 2007. "Strategic niche management for biofuels: Analysing past experiments for developing new biofuel policies," Energy Policy, Elsevier, vol. 35(6), pages 3213-3225, June.
    14. Foxon, T. J. & Gross, R. & Chase, A. & Howes, J. & Arnall, A. & Anderson, D., 2005. "UK innovation systems for new and renewable energy technologies: drivers, barriers and systems failures," Energy Policy, Elsevier, vol. 33(16), pages 2123-2137, November.
    15. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    16. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.
    17. Hellsmark, Hans & Hansen, Teis, 2020. "A new dawn for (oil) incumbents within the bioeconomy? Trade-offs and lessons for policy," Energy Policy, Elsevier, vol. 145(C).
    18. Monica Santillan Vera & Lilia Garcia Manrique & Isabel Rodriguez Pena & Angel de la Vega Navarro, 2021. "Drivers of Electricity GHG Emissions and the Role of Natural Gas in Mexican Energy Transition," Working Paper Series 1021, Department of Economics, University of Sussex Business School.
    19. Marzieh Ronaghi & Michael Reed & Sayed Saghaian, 2020. "The impact of economic factors and governance on greenhouse gas emission," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(2), pages 153-172, April.
    20. Marletto, Gerardo, 2011. "Structure, agency and change in the car regime. A review of the literature," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 47, pages 71-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:3:p:727-730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.