IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v182y2022ics0040162522003456.html
   My bibliography  Save this article

Innovation systems for technology diffusion: An analytical framework and two case studies

Author

Listed:
  • Palm, Alvar

Abstract

Existing theories on the diffusion of innovations fail to sufficiently account for contextual factors such as institutions, infrastructure, and supply-side dynamics. This paper presents a novel framework to analyse technology diffusion from a sociotechnical systems perspective, intended as an analytical tool to identify and assess drivers and barriers to diffusion that could be addressed through policy or business strategy. This framework, referred to as the diffusion innovation system (DIS) approach, is positioned within the innovation systems literature. The framework is applied to two empirical cases of renewable energy technology diffusion in Sweden: solar photovoltaics (PV) and wind power. The cases illustrate how key factors related to institutions, infrastructure, adopters, and supply co-develop over time as the technologies diffuse, hence demonstrating the merits of the framework. As these changes are both a reaction to and a cause of diffusion, the sociotechnical diffusion system develops through positive feedback loops. Although the systems' development is largely conducive of diffusion, some remaining and potential barriers are identified.

Suggested Citation

  • Palm, Alvar, 2022. "Innovation systems for technology diffusion: An analytical framework and two case studies," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:tefoso:v:182:y:2022:i:c:s0040162522003456
    DOI: 10.1016/j.techfore.2022.121821
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162522003456
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2022.121821?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schot, Johan & Kanger, Laur, 2018. "Deep transitions: Emergence, acceleration, stabilization and directionality," Research Policy, Elsevier, vol. 47(6), pages 1045-1059.
    2. John A. Norton & Frank M. Bass, 1987. "A Diffusion Theory Model of Adoption and Substitution for Successive Generations of High-Technology Products," Management Science, INFORMS, vol. 33(9), pages 1069-1086, September.
    3. Negro, Simona O. & Alkemade, Floortje & Hekkert, Marko P., 2012. "Why does renewable energy diffuse so slowly? A review of innovation system problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3836-3846.
    4. Weber, K. Matthias & Rohracher, Harald, 2012. "Legitimizing research, technology and innovation policies for transformative change," Research Policy, Elsevier, vol. 41(6), pages 1037-1047.
    5. Cooke, Philip & Gomez Uranga, Mikel & Etxebarria, Goio, 1997. "Regional innovation systems: Institutional and organisational dimensions," Research Policy, Elsevier, vol. 26(4-5), pages 475-491, December.
    6. G. Hodgson, 2007. "What Are Institutions?," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 8.
    7. Wolfgang Keller, 2004. "International Technology Diffusion," Journal of Economic Literature, American Economic Association, vol. 42(3), pages 752-782, September.
    8. Garud, Raghu & Karnoe, Peter, 2003. "Bricolage versus breakthrough: distributed and embedded agency in technology entrepreneurship," Research Policy, Elsevier, vol. 32(2), pages 277-300, February.
    9. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    10. Geels, Frank W., 2010. "Ontologies, socio-technical transitions (to sustainability), and the multi-level perspective," Research Policy, Elsevier, vol. 39(4), pages 495-510, May.
    11. Strupeit, Lars & Neij, Lena, 2017. "Cost dynamics in the deployment of photovoltaics: Insights from the German market for building-sited systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 948-960.
    12. Palm, A., 2020. "Early adopters and their motives: Differences between earlier and later adopters of residential solar photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    13. Palm, Jenny, 2018. "Household installation of solar panels – Motives and barriers in a 10-year perspective," Energy Policy, Elsevier, vol. 113(C), pages 1-8.
    14. Neij, Lena & Heiskanen, Eva & Strupeit, Lars, 2017. "The deployment of new energy technologies and the need for local learning," Energy Policy, Elsevier, vol. 101(C), pages 274-283.
    15. Sharif, Naubahar, 2006. "Emergence and development of the National Innovation Systems concept," Research Policy, Elsevier, vol. 35(5), pages 745-766, June.
    16. Binz, Christian & Truffer, Bernhard, 2017. "Global Innovation Systems—A conceptual framework for innovation dynamics in transnational contexts," Research Policy, Elsevier, vol. 46(7), pages 1284-1298.
    17. Söderholm, Patrik & Pettersson, Maria, 2011. "Offshore wind power policy and planning in Sweden," Energy Policy, Elsevier, vol. 39(2), pages 518-525, February.
    18. Söderholm, Patrik & Ek, Kristina & Pettersson, Maria, 2007. "Wind power development in Sweden: Global policies and local obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 365-400, April.
    19. Fabrizio, Kira R. & Hawn, Olga, 2013. "Enabling diffusion: How complementary inputs moderate the response to environmental policy," Research Policy, Elsevier, vol. 42(5), pages 1099-1111.
    20. Timothy J. Sturgeon & Olga Memedovic & Johannes Van Biesebroeck & Gary Gereffi, 2009. "Globalisation of the automotive industry: main features and trends," International Journal of Technological Learning, Innovation and Development, Inderscience Enterprises Ltd, vol. 2(1/2), pages 7-24.
    21. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    22. Ozgur Dedehayir & Roland J. Ortt & Carla Riverola & Francesc Miralles, 2017. "Innovators And Early Adopters In The Diffusion Of Innovations: A Literature Review," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-27, December.
    23. Palm, Alvar & Lantz, Björn, 2020. "Information dissemination and residential solar PV adoption rates: The effect of an information campaign in Sweden," Energy Policy, Elsevier, vol. 142(C).
    24. Stoneman, Paul & Diederen, Paul, 1994. "Technology Diffusion and Public Policy," Economic Journal, Royal Economic Society, vol. 104(425), pages 918-930, July.
    25. Malerba, Franco, 2002. "Sectoral systems of innovation and production," Research Policy, Elsevier, vol. 31(2), pages 247-264, February.
    26. Timothy J. Sturgeon, 2002. "Modular production networks: a new American model of industrial organization," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(3), pages 451-496, June.
    27. Carlsson, B & Stankiewicz, R, 1991. "On the Nature, Function and Composition of Technological Systems," Journal of Evolutionary Economics, Springer, vol. 1(2), pages 93-118, April.
    28. Gruber, Harald, 2001. "Competition and innovation: The diffusion of mobile telecommunications in Central and Eastern Europe," Information Economics and Policy, Elsevier, vol. 13(1), pages 19-34, March.
    29. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    30. North, Douglass C, 1994. "Economic Performance through Time," American Economic Review, American Economic Association, vol. 84(3), pages 359-368, June.
    31. Malhotra, Abhishek & Schmidt, Tobias S. & Huenteler, Joern, 2019. "The role of inter-sectoral learning in knowledge development and diffusion: Case studies on three clean energy technologies," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 464-487.
    32. Markard, Jochen & Truffer, Bernhard, 2008. "Technological innovation systems and the multi-level perspective: Towards an integrated framework," Research Policy, Elsevier, vol. 37(4), pages 596-615, May.
    33. Astrand, K. & Neij, L., 2006. "An assessment of governmental wind power programmes in Sweden--using a systems approach," Energy Policy, Elsevier, vol. 34(3), pages 277-296, February.
    34. Freeman, Chris & Louca, Francisco, 2002. "As Time Goes By: From the Industrial Revolutions to the Information Revolution," OUP Catalogue, Oxford University Press, number 9780199251056, Decembrie.
    35. Raven, Rob, 2007. "Niche accumulation and hybridisation strategies in transition processes towards a sustainable energy system: An assessment of differences and pitfalls," Energy Policy, Elsevier, vol. 35(4), pages 2390-2400, April.
    36. Bergek, Anna & Jacobsson, Staffan & Carlsson, Bo & Lindmark, Sven & Rickne, Annika, 2008. "Analyzing the functional dynamics of technological innovation systems: A scheme of analysis," Research Policy, Elsevier, vol. 37(3), pages 407-429, April.
    37. Binz, Christian & Tang, Tian & Huenteler, Joern, 2017. "Spatial lifecycles of cleantech industries – The global development history of solar photovoltaics," Energy Policy, Elsevier, vol. 101(C), pages 386-402.
    38. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    39. Bergek, Anna & Mignon, Ingrid & Sundberg, Gunnel, 2013. "Who invests in renewable electricity production? Empirical evidence and suggestions for further research," Energy Policy, Elsevier, vol. 56(C), pages 568-581.
    40. Levinthal, Daniel A, 1998. "The Slow Pace of Rapid Technological Change: Gradualism and Punctuation in Technological Change," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 7(2), pages 217-247, June.
    41. Joshuah K. Stolaroff & Constantine Samaras & Emma R. O’Neill & Alia Lubers & Alexandra S. Mitchell & Daniel Ceperley, 2018. "Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    42. Hipp, Ann & Binz, Christian, 2020. "Firm survival in complex value chains and global innovation systems: Evidence from solar photovoltaics," Research Policy, Elsevier, vol. 49(1).
    43. Johansson, Petter & Vendel, Martin & Nuur, Cali, 2020. "Integrating distributed energy resources in electricity distribution systems: An explorative study of challenges facing DSOs in Sweden," Utilities Policy, Elsevier, vol. 67(C).
    44. del Río, Pablo & Mir-Artigues, Pere, 2012. "Support for solar PV deployment in Spain: Some policy lessons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5557-5566.
    45. Lashitew, Addisu A. & van Tulder, Rob & Liasse, Yann, 2019. "Mobile phones for financial inclusion: What explains the diffusion of mobile money innovations?," Research Policy, Elsevier, vol. 48(5), pages 1201-1215.
    46. Smith, Adrian & Voß, Jan-Peter & Grin, John, 2010. "Innovation studies and sustainability transitions: The allure of the multi-level perspective and its challenges," Research Policy, Elsevier, vol. 39(4), pages 435-448, May.
    47. Joshuah K. Stolaroff & Constantine Samaras & Emma R. O’Neill & Alia Lubers & Alexandra S. Mitchell & Daniel Ceperley, 2018. "Author Correction: Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery," Nature Communications, Nature, vol. 9(1), pages 1-1, December.
    48. Fuenfschilling, Lea & Binz, Christian, 2018. "Global socio-technical regimes," Research Policy, Elsevier, vol. 47(4), pages 735-749.
    49. Max-Peter Menzel & J Markus Adrian, 2018. "Modularisation and spatial dynamics in the wind turbine industry: the example of firm relocations to Hamburg," Cambridge Journal of Regions, Economy and Society, Cambridge Political Economy Society, vol. 11(2), pages 297-315.
    50. Binz, Christian & Truffer, Bernhard & Li, Li & Shi, Yajuan & Lu, Yonglong, 2012. "Conceptualizing leapfrogging with spatially coupled innovation systems: The case of onsite wastewater treatment in China," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 155-171.
    51. Birgit Leick, 2012. "Business Networks in the Cross-border Regions of the Enlarged EU: What do we know in the Post-enlargement Era?," Journal of Borderlands Studies, Taylor & Francis Journals, vol. 27(3), pages 299-314, December.
    52. Hansson, Lisa, 2020. "Regulatory governance in emerging technologies: The case of autonomous vehicles in Sweden and Norway," Research in Transportation Economics, Elsevier, vol. 83(C).
    53. Yulin Fang & Guo‐Liang Frank Jiang & Shige Makino & Paul W. Beamish, 2010. "Multinational Firm Knowledge, Use of Expatriates, and Foreign Subsidiary Performance," Journal of Management Studies, Wiley Blackwell, vol. 47(1), pages 27-54, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xue & Fan, Li-Wei & Zhang, Hongyan, 2023. "Policies for enhancing patent quality: Evidence from renewable energy technology in China," Energy Policy, Elsevier, vol. 180(C).
    2. Attila Havas & Doris Schartinger & K. Matthias Weber, 2022. "Innovation Studies, Social Innovation, and Sustainability Transitions Research: From mutual ignorance towards an integrative perspective?," CERS-IE WORKING PAPERS 2227, Institute of Economics, Centre for Economic and Regional Studies.
    3. Ayinde, Taofeek O. & Olaniran, Abeeb O. & Abolade, Onomeabure C. & Ogbonna, Ahamuefula Ephraim, 2023. "Technology shocks - Gold market connection: Is the effect episodic to business cycle behaviour?," Resources Policy, Elsevier, vol. 84(C).
    4. Aleksey I. Shinkevich & Irina G. Ershova & Farida F. Galimulina, 2022. "Forecasting the Efficiency of Innovative Industrial Systems Based on Neural Networks," Mathematics, MDPI, vol. 11(1), pages 1-25, December.
    5. Erik Möllerström, 2022. "Energy—History and Time Trends: Special Issue Editorial," Energies, MDPI, vol. 15(15), pages 1-3, July.
    6. Roberts, Cameron & Greene, Jenna & Nemet, Gregory F., 2023. "Key enablers for carbon dioxide removal through the application of biochar to agricultural soils: Evidence from three historical analogues," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    7. An, Kangxin & Wang, Can & Cai, Wenjia, 2023. "Low-carbon technology diffusion and economic growth of China: an evolutionary general equilibrium framework," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 253-263.
    8. Nylund, Petra A. & Amores-Bravo, Xavier & Ferràs-Hernández, Xavier & Brem, Alexander, 2023. "Crisis as a catalyst of idle innovation ecosystems: Evidence from ecosystem exaptation of a water partnership," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    9. Hou, Jianhua & Tang, Shiqi & Zhang, Yang & Song, Haoyang, 2023. "Does prior knowledge affect patent technology diffusion? A semantic-based patent citation contribution analysis," Journal of Informetrics, Elsevier, vol. 17(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    2. Andersson, Johnn & Hellsmark, Hans & Sandén, Björn A., 2018. "Shaping factors in the emergence of technological innovations: The case of tidal kite technology," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 191-208.
    3. Malhotra, Abhishek & Schmidt, Tobias S. & Huenteler, Joern, 2019. "The role of inter-sectoral learning in knowledge development and diffusion: Case studies on three clean energy technologies," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 464-487.
    4. Jonas Heiberg & Bernhard Truffer, 2021. "The emergence of a global innovation system – a case study from the water sector," GEIST - Geography of Innovation and Sustainability Transitions 2021(09), GEIST Working Paper Series.
    5. Steffen S. Bettin, 2020. "Electricity infrastructure and innovation in the next phase of energy transition—amendments to the technology innovation system framework," Review of Evolutionary Political Economy, Springer, vol. 1(3), pages 371-395, November.
    6. Dahesh, Mehran Badin & Tabarsa, Gholamali & Zandieh, Mostafa & Hamidizadeh, Mohammadreza, 2020. "Reviewing the intellectual structure and evolution of the innovation systems approach: A social network analysis," Technology in Society, Elsevier, vol. 63(C).
    7. Konstantinos Koasidis & Alexandros Nikas & Hera Neofytou & Anastasios Karamaneas & Ajay Gambhir & Jakob Wachsmuth & Haris Doukas, 2020. "The UK and German Low-Carbon Industry Transitions from a Sectoral Innovation and System Failures Perspective," Energies, MDPI, vol. 13(19), pages 1-34, September.
    8. Yap, Xiao-Shan & Truffer, Bernhard, 2019. "Shaping selection environments for industrial catch-up and sustainability transitions: A systemic perspective on endogenizing windows of opportunity," Research Policy, Elsevier, vol. 48(4), pages 1030-1047.
    9. Jonas Heiberg & Christian Binz & Bernhard Truffer, 2020. "Assessing transitions through socio-technical network analysis – a methodological framework and a case study from the water sector," Papers in Evolutionary Economic Geography (PEEG) 2035, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Aug 2020.
    10. Heiberg, Jonas & Truffer, Bernhard & Binz, Christian, 2022. "Assessing transitions through socio-technical configuration analysis – a methodological framework and a case study in the water sector," Research Policy, Elsevier, vol. 51(1).
    11. Nikas, A. & Koasidis, K. & Köberle, A.C. & Kourtesi, G. & Doukas, H., 2022. "A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    12. Coenen, Lars & Benneworth, Paul & Truffer, Bernhard, 2012. "Toward a spatial perspective on sustainability transitions," Research Policy, Elsevier, vol. 41(6), pages 968-979.
    13. Bleda, Mercedes & del Río, Pablo, 2013. "The market failure and the systemic failure rationales in technological innovation systems," Research Policy, Elsevier, vol. 42(5), pages 1039-1052.
    14. Andersson, Johnn & Hellsmark, Hans & Sandén, Björn, 2021. "Photovoltaics in Sweden – Success or failure?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    15. Gosens, Jorrit & Lu, Yonglong & Coenen , Lars, 2013. "Clean-tech Innovation in Emerging Economies: Transnational Dimensions in Technological Innovation System Formation," Papers in Innovation Studies 2013/10, Lund University, CIRCLE - Centre for Innovation Research.
    16. Andersen, Allan Dahl & Markard, Jochen, 2020. "Multi-technology interaction in socio-technical transitions: How recent dynamics in HVDC technology can inform transition theories," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    17. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    18. Attila Havas & Doris Schartinger & K. Matthias Weber, 2022. "Innovation Studies, Social Innovation, and Sustainability Transitions Research: From mutual ignorance towards an integrative perspective?," CERS-IE WORKING PAPERS 2227, Institute of Economics, Centre for Economic and Regional Studies.
    19. Bajmócy, Zoltán & Vas, Zsófia, 2012. "Az innovációs rendszerek 25 éve. Szakirodalmi áttekintés evolúciós közgazdaságtani megközelítésben [25 years of innovation systems. A literature review from the angle of evolutionary economics]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 1233-1256.
    20. Fuenfschilling, Lea & Binz, Christian, 2018. "Global socio-technical regimes," Research Policy, Elsevier, vol. 47(4), pages 735-749.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:182:y:2022:i:c:s0040162522003456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.