IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v33y2008i5p986-992.html
   My bibliography  Save this article

Analysis of wind power generation and prediction using ANN: A case study

Author

Listed:
  • Carolin Mabel, M.
  • Fernandez, E.

Abstract

Many developing nations, such as India have embarked upon wind energy programs for areas experiencing high average wind speeds throughout the year. One of the states in India that is actively pursuing wind power generation programs is Tamil Nadu. Within this state, Muppandal area is one of the identified regions where wind farm concentration is high. Wind energy engineers are interested in studies that aim at assessing the output of wind farms, for which, artificial intelligence techniques can be usefully adapted. The present paper attempts to apply this concept for assessment of the wind energy output of wind farms in Muppandal, Tamil Nadu (India). Field data are collected from seven wind farms at this site over a period of 3 years from April 2002 to March 2005 and used for the analysis and prediction of power generation from wind farms. The model has been developed with the help of neural network methodology. It involves three input variables—wind speed, relative humidity and generation hours and one output variable-energy output of wind farms. The modeling is done using MATLAB toolbox. The model accuracy is evaluated by comparing the simulated results with the actual measured values at the wind farms and is found to be in good agreement.

Suggested Citation

  • Carolin Mabel, M. & Fernandez, E., 2008. "Analysis of wind power generation and prediction using ANN: A case study," Renewable Energy, Elsevier, vol. 33(5), pages 986-992.
  • Handle: RePEc:eee:renene:v:33:y:2008:i:5:p:986-992
    DOI: 10.1016/j.renene.2007.06.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148107002261
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2007.06.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hepbasli, Arif & Ozgener, Onder, 2004. "A review on the development of wind energy in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(3), pages 257-276, June.
    2. Ahmed Shata, A.S. & Hanitsch, R., 2006. "Evaluation of wind energy potential and electricity generation on the coast of Mediterranean Sea in Egypt," Renewable Energy, Elsevier, vol. 31(8), pages 1183-1202.
    3. Vogiatzis, N. & Kotti, K. & Spanomitsios, S. & Stoukides, M., 2004. "Analysis of wind potential and characteristics in North Aegean, Greece," Renewable Energy, Elsevier, vol. 29(7), pages 1193-1208.
    4. Pallabazzer, Rodolfo, 2004. "Previsional estimation of the energy output of windgenerators," Renewable Energy, Elsevier, vol. 29(3), pages 413-420.
    5. Flores, P. & Tapia, A. & Tapia, G., 2005. "Application of a control algorithm for wind speed prediction and active power generation," Renewable Energy, Elsevier, vol. 30(4), pages 523-536.
    6. Çam, Ertugrul & Arcaklıoğlu, Erol & Çavuşoğlu, Abdullah & Akbıyık, Bilge, 2005. "A classification mechanism for determining average wind speed and power in several regions of Turkey using artificial neural networks," Renewable Energy, Elsevier, vol. 30(2), pages 227-239.
    7. Jagadeesh, A., 2000. "Wind energy development in Tamil Nadu and Andhra Pradesh, India Institutional dynamics and barriers -- A case study," Energy Policy, Elsevier, vol. 28(3), pages 157-168, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    2. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2014. "Hybrid renewable energy systems for off-grid electric power: Review of substantial issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 527-539.
    3. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    4. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    5. Yurdusev, M.A. & Ata, R. & Çetin, N.S., 2006. "Assessment of optimum tip speed ratio in wind turbines using artificial neural networks," Energy, Elsevier, vol. 31(12), pages 2153-2161.
    6. Arslan, Oguz, 2010. "Technoeconomic analysis of electricity generation from wind energy in Kutahya, Turkey," Energy, Elsevier, vol. 35(1), pages 120-131.
    7. Diaf, S. & Notton, G., 2013. "Technical and economic analysis of large-scale wind energy conversion systems in Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 37-51.
    8. Ullah, Irfan & Chaudhry, Qamar-uz-Zaman & Chipperfield, Andrew J., 2010. "An evaluation of wind energy potential at Kati Bandar, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 856-861, February.
    9. Xydis, George, 2013. "A techno-economic and spatial analysis for the optimal planning of wind energy in Kythira island, Greece," International Journal of Production Economics, Elsevier, vol. 146(2), pages 440-452.
    10. Hu, Jianming & Wang, Jianzhou & Zeng, Guowei, 2013. "A hybrid forecasting approach applied to wind speed time series," Renewable Energy, Elsevier, vol. 60(C), pages 185-194.
    11. Raphael Calel & Jonathan Colmer & Antoine Dechezleprêtre & Matthieu Glachant, 2021. "Do carbon offsets offset carbon?," CEP Discussion Papers dp1808, Centre for Economic Performance, LSE.
    12. Suyash Jolly & Rob Raven, 2013. "Collective institutional entrepreneurship and contestations in wind energy in India," Working Papers 13-10, Eindhoven Center for Innovation Studies, revised Nov 2013.
    13. Davies-Colley, Christian & Smith, Willie, 2012. "Implementing environmental technologies in development situations: The example of ecological toilets," Technology in Society, Elsevier, vol. 34(1), pages 1-8.
    14. Akdag, Seyit Ahmet & Güler, Önder, 2010. "Evaluation of wind energy investment interest and electricity generation cost analysis for Turkey," Applied Energy, Elsevier, vol. 87(8), pages 2574-2580, August.
    15. Sharma, Kaushik & Ahmed, M. Rafiuddin, 2016. "Wind energy resource assessment for the Fiji Islands: Kadavu Island and Suva Peninsula," Renewable Energy, Elsevier, vol. 89(C), pages 168-180.
    16. Bataineh, Khaled M. & Dalalah, Doraid, 2013. "Assessment of wind energy potential for selected areas in Jordan," Renewable Energy, Elsevier, vol. 59(C), pages 75-81.
    17. Ilkiliç, Cumali & Aydin, Hüseyin, 2015. "Wind power potential and usage in the coastal regions of Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 78-86.
    18. Khaled, Mohamed & Ibrahim, Mostafa M. & Abdel Hamed, Hesham E. & AbdelGwad, Ahmed F., 2019. "Investigation of a small Horizontal–Axis wind turbine performance with and without winglet," Energy, Elsevier, vol. 187(C).
    19. Cloutier, Michael & Rowley, Paul, 2011. "The feasibility of renewable energy sources for pumping clean water in sub-Saharan Africa: A case study for Central Nigeria," Renewable Energy, Elsevier, vol. 36(8), pages 2220-2226.
    20. Muhammad Fitra Zambak & Catra Indra Cahyadi & Jufri Helmi & Tengku Machdhalie Sofie & Suwarno Suwarno, 2023. "Evaluation and Analysis of Wind Speed with the Weibull and Rayleigh Distribution Models for Energy Potential Using Three Models," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 427-432, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:33:y:2008:i:5:p:986-992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.