IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v211y2023icp669-680.html
   My bibliography  Save this article

Synergic effect investigation of carbon monoxide and other compositions on the high temperature proton exchange membrane fuel cell

Author

Listed:
  • Xu, Jiawei
  • Wu, Yuhua
  • Xiao, Shengying
  • Wang, Yifei
  • Xu, Xinhai

Abstract

The high temperature proton exchange membrane fuel cell integrated with the methanol steam reformer is a promising technology because it avoids the challenges of high pressure hydrogen storage and refueling. The high temperature fuel cell can tolerate the CO content in the methanol reformate with acceptable performance degradation. However, the synergic effects of CO and other impurities in the methanol reformate on the fuel cell performance need further investigation. This study thoroughly evaluates performances of the high temperature proton exchange membrane fuel cell fed in by mixture of H2, CO and other impurities such as CH3OH, H2O and CO2. The transient voltage, polarization curve, and electrical impedance spectroscopy are in-situ measured. The distribution of relaxation times method is used to characterize different time constants in the impedance spectroscopy. Meanwhile, the equivalent circuit model is developed to represent various reaction processes. The results show that the presence of CH3OH with CO in the fuel gas benefits the fuel cell performance at low current densities but aggravates the CO poisoning at high current densities. The addition of H2O with CO decreases both the Ohmic and anodic charge transfer resistances. The combination of CO2 and CO could enhance the effect of CO poisoning. Moreover, the multi-component methanol reformate test results suggest that the coexistence of multiple impurities in the methanol reformate have positive effect on the fuel cell performance.

Suggested Citation

  • Xu, Jiawei & Wu, Yuhua & Xiao, Shengying & Wang, Yifei & Xu, Xinhai, 2023. "Synergic effect investigation of carbon monoxide and other compositions on the high temperature proton exchange membrane fuel cell," Renewable Energy, Elsevier, vol. 211(C), pages 669-680.
  • Handle: RePEc:eee:renene:v:211:y:2023:i:c:p:669-680
    DOI: 10.1016/j.renene.2023.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123006225
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lahnaoui, Amin & Wulf, Christina & Heinrichs, Heidi & Dalmazzone, Didier, 2018. "Optimizing hydrogen transportation system for mobility by minimizing the cost of transportation via compressed gas truck in North Rhine-Westphalia," Applied Energy, Elsevier, vol. 223(C), pages 317-328.
    2. Ribeirinha, P. & Abdollahzadeh, M. & Pereira, A. & Relvas, F. & Boaventura, M. & Mendes, A., 2018. "High temperature PEM fuel cell integrated with a cellular membrane methanol steam reformer: Experimental and modelling," Applied Energy, Elsevier, vol. 215(C), pages 659-669.
    3. Kui Jiao & Jin Xuan & Qing Du & Zhiming Bao & Biao Xie & Bowen Wang & Yan Zhao & Linhao Fan & Huizhi Wang & Zhongjun Hou & Sen Huo & Nigel P. Brandon & Yan Yin & Michael D. Guiver, 2021. "Designing the next generation of proton-exchange membrane fuel cells," Nature, Nature, vol. 595(7867), pages 361-369, July.
    4. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    5. Xu, Jiawei & Xiao, Shengying & Xu, Xinrui & Xu, Xinhai, 2022. "Numerical study of carbon monoxide poisoning effect on high temperature PEMFCs based on an elementary reaction kinetics coupled electrochemical reaction model," Applied Energy, Elsevier, vol. 318(C).
    6. Thomas, Sobi & Vang, Jakob Rabjerg & Araya, Samuel Simon & Kær, Søren Knudsen, 2017. "Experimental study to distinguish the effects of methanol slip and water vapour on a high temperature PEM fuel cell at different operating conditions," Applied Energy, Elsevier, vol. 192(C), pages 422-436.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    2. Zhang, S. & Reimer, U. & Beale, S.B. & Lehnert, W. & Stolten, D., 2019. "Modeling polymer electrolyte fuel cells: A high precision analysis," Applied Energy, Elsevier, vol. 233, pages 1094-1103.
    3. Hu, Zunyan & Xu, Liangfei & Huang, Yiyuan & Li, Jianqiu & Ouyang, Minggao & Du, Xiaoli & Jiang, Hongliang, 2018. "Comprehensive analysis of galvanostatic charge method for fuel cell degradation diagnosis," Applied Energy, Elsevier, vol. 212(C), pages 1321-1332.
    4. Li, Na & Cui, Xiaoti & Zhu, Jimin & Zhou, Mengfan & Liso, Vincenzo & Cinti, Giovanni & Sahlin, Simon Lennart & Araya, Samuel Simon, 2023. "A review of reformed methanol-high temperature proton exchange membrane fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    5. Viorel Ionescu & Adriana Elena Balan & Alexandra Maria Isabel Trefilov & Ioan Stamatin, 2021. "Exergetic Performance of a PEM Fuel Cell with Laser-Induced Graphene as the Microporous Layer," Energies, MDPI, vol. 14(19), pages 1-18, September.
    6. Yuemeng Zhang & Jia Wang & Zhanhui Yao, 2023. "Recent Development of Fuel Cell Core Components and Key Materials: A Review," Energies, MDPI, vol. 16(5), pages 1-23, February.
    7. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Xiong, Mu & Ye, Yuntao & Yang, Xi, 2023. "Three-dimensional multi-phase simulation of proton exchange membrane fuel cell performance considering constriction straight channel," Energy, Elsevier, vol. 267(C).
    8. Wang, Yujie & Sun, Zhendong & Li, Xiyun & Yang, Xiaoyu & Chen, Zonghai, 2019. "A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems," Energy, Elsevier, vol. 189(C).
    9. Peng, Fei & Zhao, Yuanzhe & Li, Xiaopeng & Liu, Zhixiang & Chen, Weirong & Liu, Yang & Zhou, Donghua, 2017. "Development of master-slave energy management strategy based on fuzzy logic hysteresis state machine and differential power processing compensation for a PEMFC-LIB-SC hybrid tramway," Applied Energy, Elsevier, vol. 206(C), pages 346-363.
    10. Liao, Shuxin & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Modeling of a novel cathode flow field design with optimized sub-channels to improve drainage for proton exchange membrane fuel cells," Energy, Elsevier, vol. 261(PB).
    11. Zheng Huang & Laisuo Su & Yunjie Yang & Linsong Gao & Xinyu Liu & Heng Huang & Yubai Li & Yongchen Song, 2023. "Three-Dimensional Simulation on the Effects of Different Parameters and Pt Loading on the Long-Term Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    12. Vasallo, Manuel Jesús & Bravo, José Manuel & Andújar, José Manuel, 2013. "Optimal sizing for UPS systems based on batteries and/or fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 170-181.
    13. Zhang, Xin & Li, Jingwen & Xiong, Yi & Ang, Yee Sin, 2022. "Efficient harvesting of low-grade waste heat from proton exchange membrane fuel cells via thermoradiative power devices," Energy, Elsevier, vol. 258(C).
    14. Yunjie Yang & Minli Bai & Laisuo Su & Jizu Lv & Chengzhi Hu & Linsong Gao & Yang Li & Yubai Li & Yongchen Song, 2022. "One-Dimensional Numerical Simulation of Pt-Co Alloy Catalyst Aging for Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
    15. Bae, Suk Joo & Kim, Seong-Joon & Lee, Jin-Hwa & Song, Inseob & Kim, Nam-In & Seo, Yongho & Kim, Ki Buem & Lee, Naesung & Park, Jun-Young, 2014. "Degradation pattern prediction of a polymer electrolyte membrane fuel cell stack with series reliability structure via durability data of single cells," Applied Energy, Elsevier, vol. 131(C), pages 48-55.
    16. Yan, Peijian & Tian, Pengfei & Cai, Cheng & Zhou, Shenghu & Yu, Xinhai & Zhao, Shuangliang & Tu, Shan-Tung & Deng, Chengwei & Sun, Yi, 2020. "Antioxidative and stable PdZn/ZnO/Al2O3 catalyst coatings concerning methanol steam reforming for fuel cell-powered vehicles," Applied Energy, Elsevier, vol. 268(C).
    17. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    18. Bolouri, Amir & Kang, Chung Gil, 2014. "Study on dimensional and corrosion properties of thixoformed A356 and AA7075 aluminum bipolar plates for proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 71(C), pages 616-628.
    19. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    20. Venkatesan, Suriya & Mitzel, Jens & Wegner, Karsten & Costa, Remi & Gazdzicki, Pawel & Friedrich, Kaspar Andreas, 2022. "Nanomaterials and films for polymer electrolyte membrane fuel cells and solid oxide cells by flame spray pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:211:y:2023:i:c:p:669-680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.