IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v206y2023icp1228-1238.html
   My bibliography  Save this article

Scenario-based model predictive control for energy scheduling in a parabolic trough concentrating solar plant with thermal storage

Author

Listed:
  • Velarde, Pablo
  • Gallego, Antonio J.
  • Bordons, Carlos
  • Camacho, Eduardo F.

Abstract

Optimal energy planning is a key topic in thermal solar trough plants. Obtaining a profitable energy schedule is difficult due to the stochastic nature of solar irradiance and electricity prices. This article focuses on optimal energy planning for thermal solar trough plants, particularly by developing a model predictive control algorithm based on multiple scenarios to deal with uncertainties. The results obtained using the proposed scheme have been tested and compared to other well-known approaches to energy scheduling through a realistic and reliable comparison to evaluate their performances and establish their advantages and weaknesses. Simulations were carried out for a 50 MW parabolic trough concentrating solar plant with a thermal energy storage system, considering different types of days classified according to their solar irradiance, meteorological forecast, and electrical market. Simulation results show that the proposed method outperforms other scheduling methods in dealing with uncertainties by selling energy to the grid at the right times, generating the highest income of about 7.58%.

Suggested Citation

  • Velarde, Pablo & Gallego, Antonio J. & Bordons, Carlos & Camacho, Eduardo F., 2023. "Scenario-based model predictive control for energy scheduling in a parabolic trough concentrating solar plant with thermal storage," Renewable Energy, Elsevier, vol. 206(C), pages 1228-1238.
  • Handle: RePEc:eee:renene:v:206:y:2023:i:c:p:1228-1238
    DOI: 10.1016/j.renene.2023.02.114
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123002653
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.02.114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hemmati, Reza & Saboori, Hedayat & Jirdehi, Mehdi Ahmadi, 2017. "Stochastic planning and scheduling of energy storage systems for congestion management in electric power systems including renewable energy resources," Energy, Elsevier, vol. 133(C), pages 380-387.
    2. Mazzoni, Stefano & Ooi, Sean & Nastasi, Benedetto & Romagnoli, Alessandro, 2019. "Energy storage technologies as techno-economic parameters for master-planning and optimal dispatch in smart multi energy systems," Applied Energy, Elsevier, vol. 254(C).
    3. Ruiz-Moreno, Sara & Frejo, José Ramón D. & Camacho, Eduardo F., 2021. "Model predictive control based on deep learning for solar parabolic-trough plants," Renewable Energy, Elsevier, vol. 180(C), pages 193-202.
    4. Xiangjie Liu & Le Feng & Xiaobing Kong, 2022. "A Comparative Study of Robust MPC and Stochastic MPC of Wind Power Generation System," Energies, MDPI, vol. 15(13), pages 1-22, June.
    5. Deetjen, Thomas A. & Vitter, J. Scott & Reimers, Andrew S. & Webber, Michael E., 2018. "Optimal dispatch and equipment sizing of a residential central utility plant for improving rooftop solar integration," Energy, Elsevier, vol. 147(C), pages 1044-1059.
    6. P. Velarde & X. Tian & A. D. Sadowska & J. M. Maestre, 2019. "Scenario-Based Hierarchical and Distributed MPC for Water Resources Management with Dynamical Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 677-696, January.
    7. Masero, Eva & Maestre, José M. & Camacho, Eduardo F., 2022. "Market-based clustering of model predictive controllers for maximizing collected energy by parabolic-trough solar collector fields," Applied Energy, Elsevier, vol. 306(PA).
    8. Li, Rong & Guo, Su & Yang, Yong & Liu, Deyou, 2020. "Optimal sizing of wind/ concentrated solar plant/ electric heater hybrid renewable energy system based on two-stage stochastic programming," Energy, Elsevier, vol. 209(C).
    9. Francis A. Longstaff & Ashley W. Wang, 2004. "Electricity Forward Prices: A High-Frequency Empirical Analysis," Journal of Finance, American Finance Association, vol. 59(4), pages 1877-1900, August.
    10. Xin Tian & Yuxue Guo & Rudy R. Negenborn & Lingna Wei & Nay Myo Lin & José María Maestre, 2019. "Multi-Scenario Model Predictive Control Based on Genetic Algorithms for Level Regulation of Open Water Systems under Ensemble Forecasts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3025-3040, July.
    11. Herrmann, Ulf & Kelly, Bruce & Price, Henry, 2004. "Two-tank molten salt storage for parabolic trough solar power plants," Energy, Elsevier, vol. 29(5), pages 883-893.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sánchez-Amores, Ana & Martinez-Piazuelo, Juan & Maestre, José M. & Ocampo-Martinez, Carlos & Camacho, Eduardo F. & Quijano, Nicanor, 2023. "Coalitional model predictive control of parabolic-trough solar collector fields with population-dynamics assistance," Applied Energy, Elsevier, vol. 334(C).
    2. Gholaminejad, Tahereh & Khaki-Sedigh, Ali, 2022. "Stable deep Koopman model predictive control for solar parabolic-trough collector field," Renewable Energy, Elsevier, vol. 198(C), pages 492-504.
    3. Li, Xiaolei & Xu, Ershu & Song, Shuang & Wang, Xiangyan & Yuan, Guofeng, 2017. "Dynamic simulation of two-tank indirect thermal energy storage system with molten salt," Renewable Energy, Elsevier, vol. 113(C), pages 1311-1319.
    4. Lo Basso, Gianluigi & de Santoli, Livio & Paiolo, Romano & Losi, Claudio, 2021. "The potential role of trans-critical CO2 heat pumps within a solar cooling system for building services: The hybridised system energy analysis by a dynamic simulation model," Renewable Energy, Elsevier, vol. 164(C), pages 472-490.
    5. Mara Madaleno & Carlos Pinho, 2010. "Hedging Performance and Multiscale Relationships in the German Electricity Spot and Futures Markets," JRFM, MDPI, vol. 3(1), pages 1-37, December.
    6. Erfan Amini & Danial Golbaz & Fereidoun Amini & Meysam Majidi Nezhad & Mehdi Neshat & Davide Astiaso Garcia, 2020. "A Parametric Study of Wave Energy Converter Layouts in Real Wave Models," Energies, MDPI, vol. 13(22), pages 1-23, November.
    7. Mehdi Neshat & Nataliia Y. Sergiienko & Erfan Amini & Meysam Majidi Nezhad & Davide Astiaso Garcia & Bradley Alexander & Markus Wagner, 2020. "A New Bi-Level Optimisation Framework for Optimising a Multi-Mode Wave Energy Converter Design: A Case Study for the Marettimo Island, Mediterranean Sea," Energies, MDPI, vol. 13(20), pages 1-23, October.
    8. Desideri, Umberto & Campana, Pietro Elia, 2014. "Analysis and comparison between a concentrating solar and a photovoltaic power plant," Applied Energy, Elsevier, vol. 113(C), pages 422-433.
    9. Yanfeng Liu & Yaxing Wang & Xi Luo, 2020. "Design and Operation Optimization of Distributed Solar Energy System Based on Dynamic Operation Strategy," Energies, MDPI, vol. 14(1), pages 1-26, December.
    10. Karakatsani Nektaria V & Bunn Derek W., 2010. "Fundamental and Behavioural Drivers of Electricity Price Volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-42, September.
    11. Bunn, Derek W. & Chen, Dipeng, 2013. "The forward premium in electricity futures," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 173-186.
    12. Raviv, Eran & Bouwman, Kees E. & van Dijk, Dick, 2015. "Forecasting day-ahead electricity prices: Utilizing hourly prices," Energy Economics, Elsevier, vol. 50(C), pages 227-239.
    13. Jacobs, Kris & Li, Yu & Pirrong, Craig, 2022. "Supply, demand, and risk premiums in electricity markets," Journal of Banking & Finance, Elsevier, vol. 135(C).
    14. Woo, C.K. & Zarnikau, J. & Moore, J. & Horowitz, I., 2011. "Wind generation and zonal-market price divergence: Evidence from Texas," Energy Policy, Elsevier, vol. 39(7), pages 3928-3938, July.
    15. Vitale, F. & Rispoli, N. & Sorrentino, M. & Rosen, M.A. & Pianese, C., 2021. "On the use of dynamic programming for optimal energy management of grid-connected reversible solid oxide cell-based renewable microgrids," Energy, Elsevier, vol. 225(C).
    16. Spindler, Christian & Woll, Oliver & Schober, Dominik, 2018. "Sharing is not caring: Backward integration of consumers," ZEW Discussion Papers 18-006, ZEW - Leibniz Centre for European Economic Research.
    17. Galarneau-Vincent, Rémi & Gauthier, Geneviève & Godin, Frédéric, 2023. "Foreseeing the worst: Forecasting electricity DART spikes," Energy Economics, Elsevier, vol. 119(C).
    18. Algieri, Bernardina & Leccadito, Arturo & Tunaru, Diana, 2021. "Risk premia in electricity derivatives markets," Energy Economics, Elsevier, vol. 100(C).
    19. Bowden, Nicholas & Payne, James E., 2008. "Short term forecasting of electricity prices for MISO hubs: Evidence from ARIMA-EGARCH models," Energy Economics, Elsevier, vol. 30(6), pages 3186-3197, November.
    20. Fernandez-Perez, Adrian & Fuertes, Ana-Maria & Miffre, Joelle, 2021. "The risk premia of energy futures," Energy Economics, Elsevier, vol. 102(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:206:y:2023:i:c:p:1228-1238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.