IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v205y2023icp574-582.html
   My bibliography  Save this article

Dynamic hybrid modeling of fuel ethanol fermentation process by integrating biomass concentration XGBoost model and kinetic parameter artificial neural network model into mechanism model

Author

Listed:
  • Li, Xinzhe
  • Dong, Yufeng
  • Chang, Lu
  • Chen, Lifan
  • Wang, Guan
  • Zhuang, Yingping
  • Yan, Xuefeng

Abstract

Fuel ethanol has drawn extensive attention as renewable energy. However, modeling the fuel ethanol batch fermentation process is still a critical task. The unstructured kinetic model (UKM) is often utilized to model the process, but it encounters two problems due to the large differences in initial glucose concentrations. First, the UKM has poor predictions of the yeast growth, which is a crucial production index. Second, the kinetic parameters of the UKM are time-varying because of the changing environmental conditions. The constant manually set kinetic parameters affect the prediction accuracy. To tackle the problems, we propose a dynamic hybrid model of the fuel ethanol fermentation process. First, a biomass concentration prediction model based on extreme gradient boosting is developed. It predicts the values of biomass concentrations and mycelium growth rate as supplementary mechanism knowledge. Then, we present an artificial neural network-based model to determine the time-varying kinetic parameters. Our model can accurately predict the time series of biomass, ethanol, and glucose concentrations, with RMSEs reaching 0.3323, 1.9295, and 3.0540. Experimental results show that the dynamic hybrid model performs with satisfactory accuracy in modeling the fuel ethanol fermentation process.

Suggested Citation

  • Li, Xinzhe & Dong, Yufeng & Chang, Lu & Chen, Lifan & Wang, Guan & Zhuang, Yingping & Yan, Xuefeng, 2023. "Dynamic hybrid modeling of fuel ethanol fermentation process by integrating biomass concentration XGBoost model and kinetic parameter artificial neural network model into mechanism model," Renewable Energy, Elsevier, vol. 205(C), pages 574-582.
  • Handle: RePEc:eee:renene:v:205:y:2023:i:c:p:574-582
    DOI: 10.1016/j.renene.2023.01.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123001386
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.01.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shrestha, Anil & Mustafa, Andy Ali & Htike, Myo Myo & You, Vithyea & Kakinaka, Makoto, 2022. "Evolution of energy mix in emerging countries: Modern renewable energy, traditional renewable energy, and non-renewable energy," Renewable Energy, Elsevier, vol. 199(C), pages 419-432.
    2. Huang, Weijia & Zheng, Danxing & Chen, Xiaohui & Shi, Lin & Dai, Xiaoye & Chen, Youhui & Jing, Xuye, 2020. "Standard thermodynamic properties for the energy grade evaluation of fossil fuels and renewable fuels," Renewable Energy, Elsevier, vol. 147(P1), pages 2160-2170.
    3. Dodić, Jelena M. & Vučurović, Damjan G. & Dodić, Siniša N. & Grahovac, Jovana A. & Popov, Stevan D. & Nedeljković, Nataša M., 2012. "Kinetic modelling of batch ethanol production from sugar beet raw juice," Applied Energy, Elsevier, vol. 99(C), pages 192-197.
    4. Pandiyan, K. & Singh, Arjun & Singh, Surender & Saxena, Anil Kumar & Nain, Lata, 2019. "Technological interventions for utilization of crop residues and weedy biomass for second generation bio-ethanol production," Renewable Energy, Elsevier, vol. 132(C), pages 723-741.
    5. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niaze, Ambereen A. & Sahu, Rohit & Sunkara, Mahendra K. & Upadhyayula, Sreedevi, 2023. "Model construction and optimization for raising the concentration of industrial bioethanol production by using a data-driven ANN model," Renewable Energy, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:prg:jnlcfu:v:2022:y:2022:i:1:id:572 is not listed on IDEAS
    2. Chang, Andrew C. & Hanson, Tyler J., 2016. "The accuracy of forecasts prepared for the Federal Open Market Committee," Journal of Economics and Business, Elsevier, vol. 83(C), pages 23-43.
    3. Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    4. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    5. Paulo Júlio & Pedro M. Esperança, 2012. "Evaluating the forecast quality of GDP components: An application to G7," GEE Papers 0047, Gabinete de Estratégia e Estudos, Ministério da Economia, revised Apr 2012.
    6. Cameron Roach & Rob Hyndman & Souhaib Ben Taieb, 2021. "Non‐linear mixed‐effects models for time series forecasting of smart meter demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1118-1130, September.
    7. Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
    8. Nikitopoulos, Christina Sklibosios & Thomas, Alice Carole & Wang, Jianxin, 2023. "The economic impact of daily volatility persistence on energy markets," Journal of Commodity Markets, Elsevier, vol. 30(C).
    9. I. Yu. Zolotova & V. V. Dvorkin, 2017. "Short-term forecasting of prices for the Russian wholesale electricity market based on neural networks," Studies on Russian Economic Development, Springer, vol. 28(6), pages 608-615, November.
    10. Döpke, Jörg & Fritsche, Ulrich & Müller, Karsten, 2019. "Has macroeconomic forecasting changed after the Great Recession? Panel-based evidence on forecast accuracy and forecaster behavior from Germany," Journal of Macroeconomics, Elsevier, vol. 62(C).
    11. Blaskowitz, Oliver & Herwartz, Helmut, 2011. "On economic evaluation of directional forecasts," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1058-1065, October.
    12. Thiyanga S. Talagala & Feng Li & Yanfei Kang, 2019. "Feature-based Forecast-Model Performance Prediction," Monash Econometrics and Business Statistics Working Papers 21/19, Monash University, Department of Econometrics and Business Statistics.
    13. Martin Guth, 2022. "Predicting Default Probabilities for Stress Tests: A Comparison of Models," Papers 2202.03110, arXiv.org.
    14. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
    15. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    16. Wasilewski, J. & Baczynski, D., 2017. "Short-term electric energy production forecasting at wind power plants in pareto-optimality context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 177-187.
    17. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    18. Goldsworthy, M. & Moore, T. & Peristy, M. & Grimeland, M., 2022. "Cloud-based model-predictive-control of a battery storage system at a commercial site," Applied Energy, Elsevier, vol. 327(C).
    19. Bialowolski, Piotr & Kuszewski, Tomasz & Witkowski, Bartosz, 2015. "Bayesian averaging vs. dynamic factor models for forecasting economic aggregates with tendency survey data," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 9, pages 1-37.
    20. Kunze, Frederik, 2017. "Predicting exchange rates in Asia: New insights on the accuracy of survey forecasts," University of Göttingen Working Papers in Economics 326, University of Goettingen, Department of Economics.
    21. Drachal, Krzysztof, 2021. "Forecasting crude oil real prices with averaging time-varying VAR models," Resources Policy, Elsevier, vol. 74(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:205:y:2023:i:c:p:574-582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.