IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v163y2021icp1660-1672.html
   My bibliography  Save this article

A circular economy model based on biomethane: What are the opportunities for the municipality of Rome and beyond?

Author

Listed:
  • D’Adamo, Idiano
  • Falcone, Pasquale Marcello
  • Huisingh, Donald
  • Morone, Piergiuseppe

Abstract

This paper defines the roles of biomethane for a double-green transition, through the integration of an effective management of renewable energy and municipal waste. The authors perform an assessment of the potential transition of the municipality of Rome to a more sustainable transport system, based on the economic feasibility of production of biomethane as analysed with the Discounted Cash Flow methodology. The potential reduction of emissions is quantified considering biomethane, to be used as vehicle fuel instead of natural gas. The provision of subsidies is found to be an essential condition to support the development of the biomethane sector. The subsidies must be coordinated with other policies such as the construction and operation of new fuelling stations and the increase of vehicles fuelled by biomethane. Several economic indicators are used to support investors by defining the conditions in which the profitability and economic opportunities are quantified. The transformation of bio-wastes into clean energy, closes the loop and helps societies to make progress toward becoming circular economies, which can contribute to decarbonizing the transport sector. Results of these analyses are applicable in other municipalities, which are currently under-utilizing their organic wastes and by-products.

Suggested Citation

  • D’Adamo, Idiano & Falcone, Pasquale Marcello & Huisingh, Donald & Morone, Piergiuseppe, 2021. "A circular economy model based on biomethane: What are the opportunities for the municipality of Rome and beyond?," Renewable Energy, Elsevier, vol. 163(C), pages 1660-1672.
  • Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:1660-1672
    DOI: 10.1016/j.renene.2020.10.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120316384
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.10.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Tong & Curtis, John & Curtis, Matthew, 2019. "Promoting biogas and biomethane production: Lessons from cross-country studies," Papers WP630, Economic and Social Research Institute (ESRI).
    2. Horschig, Thomas & Adams, P.W.R. & Gawel, Erik & Thrän, Daniela, 2018. "How to decarbonize the natural gas sector: A dynamic simulation approach for the market development estimation of renewable gas in Germany," Applied Energy, Elsevier, vol. 213(C), pages 555-572.
    3. Saija Rasi & Karetta Timonen & Katri Joensuu & Kristiina Regina & Perttu Virkajärvi & Hannele Heusala & Elina Tampio & Sari Luostarinen, 2020. "Sustainability of Vehicle Fuel Biomethane Produced from Grass Silage in Finland," Sustainability, MDPI, vol. 12(10), pages 1-11, May.
    4. Ingrao, Carlo & Bacenetti, Jacopo & Adamczyk, Janusz & Ferrante, Valentina & Messineo, Antonio & Huisingh, Donald, 2019. "Investigating energy and environmental issues of agro-biogas derived energy systems: A comprehensive review of Life Cycle Assessments," Renewable Energy, Elsevier, vol. 136(C), pages 296-307.
    5. Budzianowski, Wojciech M. & Budzianowska, Dominika A., 2015. "Economic analysis of biomethane and bioelectricity generation from biogas using different support schemes and plant configurations," Energy, Elsevier, vol. 88(C), pages 658-666.
    6. Barbera, Elena & Menegon, Silvia & Banzato, Donatella & D'Alpaos, Chiara & Bertucco, Alberto, 2019. "From biogas to biomethane: A process simulation-based techno-economic comparison of different upgrading technologies in the Italian context," Renewable Energy, Elsevier, vol. 135(C), pages 663-673.
    7. Zhu, Tong & Curtis, John & Clancy, Matthew, 2019. "Promoting agricultural biogas and biomethane production: Lessons from cross-country studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    8. Singlitico, Alessandro & Goggins, Jamie & Monaghan, Rory F.D., 2019. "The role of life cycle assessment in the sustainable transition to a decarbonised gas network through green gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 16-28.
    9. Keramitsoglou, Kiriaki M. & Mellon, Robert C. & Tsagkaraki, Maria I. & Tsagarakis, Konstantinos P., 2020. "Designing a logo for renewable energy sources with public participation: Empirical evidence from Greece," Renewable Energy, Elsevier, vol. 153(C), pages 1205-1218.
    10. Scarlat, Nicolae & Dallemand, Jean-François & Fahl, Fernando, 2018. "Biogas: Developments and perspectives in Europe," Renewable Energy, Elsevier, vol. 129(PA), pages 457-472.
    11. Lombardi, Lidia & Francini, Giovanni, 2020. "Techno-economic and environmental assessment of the main biogas upgrading technologies," Renewable Energy, Elsevier, vol. 156(C), pages 440-458.
    12. Tsagarakis, Konstantinos P. & Mavragani, Amaryllis & Jurelionis, Andrius & Prodan, Iulia & Andrian, Tugui & Bajare, Diana & Korjakins, Aleksandrs & Magelinskaite-Legkauskiene, Sarune & Razvan, Veres &, 2018. "Clean vs. Green: Redefining renewable energy. Evidence from Latvia, Lithuania, and Romania," Renewable Energy, Elsevier, vol. 121(C), pages 412-419.
    13. Falcone, Pasquale Marcello & Morone, Piergiuseppe & Sica, Edgardo, 2018. "Greening of the financial system and fuelling a sustainability transition," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 23-37.
    14. Baena-Moreno, Francisco M. & Malico, Isabel & Rodríguez-Galán, Mónica & Serrano, Antonio & Fermoso, Fernando G. & Navarrete, Benito, 2020. "The importance of governmental incentives for small biomethane plants in South Spain," Energy, Elsevier, vol. 206(C).
    15. Cremiato, Raffaele & Mastellone, Maria Laura & Tagliaferri, Carla & Zaccariello, Lucio & Lettieri, Paola, 2018. "Environmental impact of municipal solid waste management using Life Cycle Assessment: The effect of anaerobic digestion, materials recovery and secondary fuels production," Renewable Energy, Elsevier, vol. 124(C), pages 180-188.
    16. Collet, Pierre & Flottes, Eglantine & Favre, Alain & Raynal, Ludovic & Pierre, Hélène & Capela, Sandra & Peregrina, Carlos, 2017. "Techno-economic and Life Cycle Assessment of methane production via biogas upgrading and power to gas technology," Applied Energy, Elsevier, vol. 192(C), pages 282-295.
    17. Lauer, Markus & Hansen, Jason K. & Lamers, Patrick & Thrän, Daniela, 2018. "Making money from waste: The economic viability of producing biogas and biomethane in the Idaho dairy industry," Applied Energy, Elsevier, vol. 222(C), pages 621-636.
    18. Korhonen, Jouni & Honkasalo, Antero & Seppälä, Jyri, 2018. "Circular Economy: The Concept and its Limitations," Ecological Economics, Elsevier, vol. 143(C), pages 37-46.
    19. Pellegrini, Laura Annamaria & De Guido, Giorgia & Langé, Stefano, 2018. "Biogas to liquefied biomethane via cryogenic upgrading technologies," Renewable Energy, Elsevier, vol. 124(C), pages 75-83.
    20. Lönnqvist, Tomas & Grönkvist, Stefan & Sandberg, Thomas, 2017. "Forest-derived methane in the Swedish transport sector: A closing window?," Energy Policy, Elsevier, vol. 105(C), pages 440-450.
    21. von Rosenstiel, Dirk Peters & Heuermann, Daniel F. & Hüsig, Stefan, 2015. "Why has the introduction of natural gas vehicles failed in Germany?—Lessons on the role of market failure in markets for alternative fuel vehicles," Energy Policy, Elsevier, vol. 78(C), pages 91-101.
    22. Vo, Truc T.Q. & Wall, David M. & Ring, Denis & Rajendran, Karthik & Murphy, Jerry D., 2018. "Techno-economic analysis of biogas upgrading via amine scrubber, carbon capture and ex-situ methanation," Applied Energy, Elsevier, vol. 212(C), pages 1191-1202.
    23. Xue, Jingyan & Liu, Gengyuan & Casazza, Marco & Ulgiati, Sergio, 2018. "Development of an urban FEW nexus online analyzer to support urban circular economy strategy planning," Energy, Elsevier, vol. 164(C), pages 475-495.
    24. D'Adamo, Idiano & Falcone, Pasquale Marcello & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "RES-T trajectories and an integrated SWOT-AHP analysis for biomethane. Policy implications to support a green revolution in European transport," Energy Policy, Elsevier, vol. 138(C).
    25. Rajendran, Karthik & Browne, James D. & Murphy, Jerry D., 2019. "What is the level of incentivisation required for biomethane upgrading technologies with carbon capture and reuse?," Renewable Energy, Elsevier, vol. 133(C), pages 951-963.
    26. Åhman, Max, 2010. "Biomethane in the transport sector--An appraisal of the forgotten option," Energy Policy, Elsevier, vol. 38(1), pages 208-217, January.
    27. O’Shea, Richard & Wall, David & Kilgallon, Ian & Murphy, Jerry D., 2016. "Assessment of the impact of incentives and of scale on the build order and location of biomethane facilities and the feedstock they utilise," Applied Energy, Elsevier, vol. 182(C), pages 394-408.
    28. Ornelas-Ferreira, B. & Lobato, L.C.S. & Colturato, L.F.D. & Torres, E.O. & Pombo, L.M. & Pujatti, F.J.P. & Araújo, J.C. & Chernicharo, C.A.L., 2020. "Strategies for energy recovery and gains associated with the implementation of a solid state batch methanization system for treating organic waste from the city of Rio de Janeiro - Brazil," Renewable Energy, Elsevier, vol. 146(C), pages 1976-1983.
    29. Rotunno, Paolo & Lanzini, Andrea & Leone, Pierluigi, 2017. "Energy and economic analysis of a water scrubbing based biogas upgrading process for biomethane injection into the gas grid or use as transportation fuel," Renewable Energy, Elsevier, vol. 102(PB), pages 417-432.
    30. Vanessa Zeller & Edgar Battand Towa Kouokam & Marc Degrez & Wouter Achten, 2019. "Urban waste flows and their potential for a circular economy model at city-region level," ULB Institutional Repository 2013/278528, ULB -- Universite Libre de Bruxelles.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Idiano D’Adamo & Claudio Sassanelli, 2022. "Biomethane Community: A Research Agenda towards Sustainability," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    2. Herbes, Carsten & Rilling, Benedikt & Ringel, Marc, 2021. "Policy frameworks and voluntary markets for biomethane – How do different policies influence providers’ product strategies?," Energy Policy, Elsevier, vol. 153(C).
    3. Barbera, Elena & Menegon, Silvia & Banzato, Donatella & D'Alpaos, Chiara & Bertucco, Alberto, 2019. "From biogas to biomethane: A process simulation-based techno-economic comparison of different upgrading technologies in the Italian context," Renewable Energy, Elsevier, vol. 135(C), pages 663-673.
    4. Bedoić, Robert & Jurić, Filip & Ćosić, Boris & Pukšec, Tomislav & Čuček, Lidija & Duić, Neven, 2020. "Beyond energy crops and subsidised electricity – A study on sustainable biogas production and utilisation in advanced energy markets," Energy, Elsevier, vol. 201(C).
    5. D'Adamo, Idiano & Falcone, Pasquale Marcello & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "RES-T trajectories and an integrated SWOT-AHP analysis for biomethane. Policy implications to support a green revolution in European transport," Energy Policy, Elsevier, vol. 138(C).
    6. Alberto Benato & Chiara D’Alpaos & Alarico Macor, 2022. "Possible Ways of Extending the Biogas Plants Lifespan after the Feed-In Tariff Expiration," Energies, MDPI, vol. 15(21), pages 1-23, October.
    7. Grzegorz Piechota & Bartłomiej Igliński, 2021. "Biomethane in Poland—Current Status, Potential, Perspective and Development," Energies, MDPI, vol. 14(6), pages 1-32, March.
    8. Francisco M. Baena-Moreno & Isabel Malico & Isabel Paula Marques, 2021. "Promoting Sustainability: Wastewater Treatment Plants as a Source of Biomethane in Regions Far from a High-Pressure Grid. A Real Portuguese Case Study," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    9. Bedoić, Robert & Dorotić, Hrvoje & Schneider, Daniel Rolph & Čuček, Lidija & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2021. "Synergy between feedstock gate fee and power-to-gas: An energy and economic analysis of renewable methane production in a biogas plant," Renewable Energy, Elsevier, vol. 173(C), pages 12-23.
    10. Ardolino, F. & Cardamone, G.F. & Parrillo, F. & Arena, U., 2021. "Biogas-to-biomethane upgrading: A comparative review and assessment in a life cycle perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    11. Lombardi, Lidia & Francini, Giovanni, 2020. "Techno-economic and environmental assessment of the main biogas upgrading technologies," Renewable Energy, Elsevier, vol. 156(C), pages 440-458.
    12. Ghafoori, Mohammad Samim & Loubar, Khaled & Marin-Gallego, Mylène & Tazerout, Mohand, 2022. "Techno-economic and sensitivity analysis of biomethane production via landfill biogas upgrading and power-to-gas technology," Energy, Elsevier, vol. 239(PB).
    13. Skorek-Osikowska, Anna & Martín-Gamboa, Mario & Iribarren, Diego & García-Gusano, Diego & Dufour, Javier, 2020. "Thermodynamic, economic and environmental assessment of energy systems including the use of gas from manure fermentation in the context of the Spanish potential," Energy, Elsevier, vol. 200(C).
    14. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    15. Wang, Xuemei & Yan, Rui & Zhao, Yuying & Cheng, Shikun & Han, Yanzhao & Yang, Shuo & Cai, Di & Mang, Heinz-Peter & Li, Zifu, 2020. "Biogas standard system in China," Renewable Energy, Elsevier, vol. 157(C), pages 1265-1273.
    16. Christopher Schmid & Thomas Horschig & Alexandra Pfeiffer & Nora Szarka & Daniela Thrän, 2019. "Biogas Upgrading: A Review of National Biomethane Strategies and Support Policies in Selected Countries," Energies, MDPI, vol. 12(19), pages 1-24, October.
    17. Bose, A. & O'Shea, R. & Lin, R. & Long, A. & Rajendran, K. & Wall, D. & De, S. & Murphy, J.D., 2022. "Evaluation of a biomethane, food and biofertiliser polygeneration system in a circular economy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    18. Janusch, C. & Lewin, E.F. & Battaglia, M.L. & Rezaei-Chiyaneh, E. & Von Cossel, M., 2021. "Flower-power in the bioenergy sector – A review on second generation biofuel from perennial wild plant mixtures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    19. D'Adamo, Idiano & Mammetti, Marco & Ottaviani, Dario & Ozturk, Ilhan, 2023. "Photovoltaic systems and sustainable communities: New social models for ecological transition. The impact of incentive policies in profitability analyses," Renewable Energy, Elsevier, vol. 202(C), pages 1291-1304.
    20. Lidia Lombardi & Barbara Mendecka & Simone Fabrizi, 2020. "Solar Integrated Anaerobic Digester: Energy Savings and Economics," Energies, MDPI, vol. 13(17), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:163:y:2021:i:c:p:1660-1672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.