IDEAS home Printed from https://ideas.repec.org/p/ulb/ulbeco/2013-278528.html
   My bibliography  Save this paper

Urban waste flows and their potential for a circular economy model at city-region level

Author

Listed:
  • Vanessa Zeller
  • Edgar Battand Towa Kouokam
  • Marc Degrez
  • Wouter Achten

Abstract

To enable cities to become more circular, i.e. close material cycles, decision-makers need detailed data about the production and treatment of waste. At city level, conventional statistics on waste are often incomplete or lack detail. Waste input-output accounting offers an alternative, using waste supply and use tables to create detailed inventories of economy-wide flows of waste. In this study we develop such tables for the city-region of Brussels (Belgium) and use them to analyse the urban waste metabolism in terms of waste flows, waste production intensity and waste treatment performance. The waste flow analysis revealed: the amount of collected waste; the proportion contributed by individual sectors; the material composition of waste flows and the location of treatment. Currently, around 50% of the 1.5 million tons of waste collected in Brussels is treated in local facilities. However, less than 1% of the collected waste is used in a way that closes material cycles within city limits. The waste performance analysis reveals that the construction sector had the highest waste production intensity and the household sector the highest incineration intensity. In terms of waste prevention and local valorisation potential, we identified flows and sectors for future targeting, one of the most promising being food waste. We conclude that the urban context can restrict the local valorisation of waste flows, thus we see the role of cities such as Brussels in a circular economy as mainly contributing to the closing of material cycles at national or even global level.

Suggested Citation

  • Vanessa Zeller & Edgar Battand Towa Kouokam & Marc Degrez & Wouter Achten, 2019. "Urban waste flows and their potential for a circular economy model at city-region level," ULB Institutional Repository 2013/278528, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:ulb:ulbeco:2013/278528
    Note: SCOPUS: ar.j
    as

    Download full text from publisher

    File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/278528/3/Zeller_etal.2018-BXL_CE_WasteFlows_Post.pdf
    File Function: Full text for the whole work, or for a work part
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Makiko Tsukui & Shigemi Kagawa & Yasushi Kondo, 2015. "Measuring the waste footprint of cities in Japan: an interregional waste input–output analysis," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-24, December.
    2. Richard Wood & Konstantin Stadler & Tatyana Bulavskaya & Stephan Lutter & Stefan Giljum & Arjan De Koning & Jeroen Kuenen & Helmut Schütz & José Acosta-Fernández & Arkaitz Usubiaga & Moana Simas & Olg, 2014. "Global Sustainability Accounting—Developing EXIOBASE for Multi-Regional Footprint Analysis," Sustainability, MDPI, vol. 7(1), pages 1-26, December.
    3. Vanessa Zeller & Edgar Battand Towa Kouokam & Marc Degrez & Wouter Achten, 2018. "Integration of Waste Supply and Use Data into Regional Footprints: Case Study on the Generation and Use of Waste from Consumption and Production Activities in Brussels," ULB Institutional Repository 2013/261396, ULB -- Universite Libre de Bruxelles.
    4. Arnold Tukker & Arjan de Koning & Richard Wood & Troy Hawkins & Stephan Lutter & Jose Acosta & Jose M. Rueda Cantuche & Maaike Bouwmeester & Jan Oosterhaven & Thomas Drosdowski & Jeroen Kuenen, 2013. "Exiopol - Development And Illustrative Analyses Of A Detailed Global Mr Ee Sut/Iot," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 50-70, March.
    5. Shinichiro Nakamura & Kenichi Nakajima & Yasushi Kondo & Tetsuya Nagasaka, 2007. "The Waste Input‐Output Approach to Materials Flow Analysis," Journal of Industrial Ecology, Yale University, vol. 11(4), pages 50-63, October.
    6. Jacob Fry & Manfred Lenzen & Damien Giurco & Stefan Pauliuk, 2016. "An Australian Multi-Regional Waste Supply-Use Framework," Journal of Industrial Ecology, Yale University, vol. 20(6), pages 1295-1305, December.
    7. Shinichiro Nakamura & Yasushi Kondo, 2002. "Input‐Output Analysis of Waste Management," Journal of Industrial Ecology, Yale University, vol. 6(1), pages 39-63, January.
    8. Christian Reynolds & Julia Piantadosi & John Boland, 2014. "A Waste Supply-Use Analysis of Australian Waste Flows," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 3(1), pages 1-16, December.
    9. Fang, Kai & Dong, Liang & Ren, Jingzheng & Zhang, Qifeng & Han, Ling & Fu, Huizhen, 2017. "Carbon footprints of urban transition: Tracking circular economy promotions in Guiyang, China," Ecological Modelling, Elsevier, vol. 365(C), pages 30-44.
    10. Manfred Lenzen & Christian John Reynolds, 2014. "A Supply-Use Approach to Waste Input-Output Analysis," Journal of Industrial Ecology, Yale University, vol. 18(2), pages 212-226, April.
    11. Chen, Xudong & Fujita, Tsuyoshi & Hayashi, Yoshitsugu & Kato, Hirokazu & Geng, Yong, 2014. "Determining optimal resource recycling boundary at regional level: A case study on Tokyo Metropolitan Area in Japan," European Journal of Operational Research, Elsevier, vol. 233(2), pages 337-348.
    12. Xudong Chen & Tsuyoshi Fujita & Satoshi Ohnishi & Minoru Fujii & Yong Geng, 2012. "The Impact of Scale, Recycling Boundary, and Type of Waste on Symbiosis and Recycling," Journal of Industrial Ecology, Yale University, vol. 16(1), pages 129-141, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edgar Battand Towa Kouokam & Vanessa Zeller & Wouter Achten, 2019. "Input-output models and waste management analysis: A critical review," ULB Institutional Repository 2013/359535, ULB -- Universite Libre de Bruxelles.
    2. Christian John Reynolds & Julia Piantadosi & John Boland, 2015. "Rescuing Food from the Organics Waste Stream to Feed the Food Insecure: An Economic and Environmental Assessment of Australian Food Rescue Operations Using Environmentally Extended Waste Input-Output ," Sustainability, MDPI, vol. 7(4), pages 1-20, April.
    3. Hasegawa Ryoji & Hirofumi Nakayama & Takayuki Shimoaka, 2017. "Analyzing material flow and value added associated with non-metallic mineral wastes in Japan," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-15, December.
    4. Glenn A. Aguilar-Hernandez & Carlos Pablo Sigüenza-Sanchez & Franco Donati & João F. D. Rodrigues & Arnold Tukker, 2018. "Assessing circularity interventions: a review of EEIOA-based studies," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-24, December.
    5. Edgar Battand Towa Kouokam & Vanessa Zeller & Stefano Merciai & Wouter Achten, 2021. "Regional waste footprint and waste treatments analysis," ULB Institutional Repository 2013/332189, ULB -- Universite Libre de Bruxelles.
    6. Soo Huey Teh & Thomas Wiedmann & Stephen Moore, 2018. "Mixed-unit hybrid life cycle assessment applied to the recycling of construction materials," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-25, December.
    7. Dilekli, Naci & Cazcarro, Ignacio, 2019. "Testing the SDG targets on water and sanitation using the world trade model with a waste, wastewater, and recycling framework," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    8. Thomas Wiedmann, 2017. "An input–output virtual laboratory in practice – survey of uptake, usage and applications of the first operational IELab," Economic Systems Research, Taylor & Francis Journals, vol. 29(2), pages 296-312, April.
    9. Kucukvar, Murat & Haider, Muhammad Ali & Onat, Nuri Cihat, 2017. "Exploring the material footprints of national electricity production scenarios until 2050: The case for Turkey and UK," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 251-263.
    10. Eivind Lekve Bjelle & Johannes Többen & Konstantin Stadler & Thomas Kastner & Michaela C. Theurl & Karl-Heinz Erb & Kjartan-Steen Olsen & Kirsten S. Wiebe & Richard Wood, 2020. "Adding country resolution to EXIOBASE: impacts on land use embodied in trade," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-25, December.
    11. Angela Neves & Radu Godina & Susana G. Azevedo & João C. O. Matias, 2019. "Current Status, Emerging Challenges, and Future Prospects of Industrial Symbiosis in Portugal," Sustainability, MDPI, vol. 11(19), pages 1-23, October.
    12. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2020. "The methane footprint of nations: Stylized facts from a global panel dataset," Ecological Economics, Elsevier, vol. 170(C).
    13. Shigemi Kagawa & Seiji Hashimoto & Shunsuke Managi, 2015. "Special issue: studies on industrial ecology," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(3), pages 361-368, July.
    14. Pothen, Frank & Tovar Reaños, Miguel Angel, 2018. "The Distribution of Material Footprints in Germany," Ecological Economics, Elsevier, vol. 153(C), pages 237-251.
    15. Jaume Freire-González & Christopher A. Decker & Jim W. Hall, 2017. "A Scenario-Based Framework for Assessing the Economic Impacts of Potential Droughts," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 1-27, October.
    16. Hajime Ohno & Kazuyo Matsubae & Kenichi Nakajima & Keisuke Nansai & Yasuhiro Fukushima & Tetsuya Nagasaka, 2016. "Consumption-based accounting of steel alloying elements and greenhouse gas emissions associated with the metal use: the case of Japan," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-17, December.
    17. Makiko Tsukui & Shigemi Kagawa & Yasushi Kondo, 2015. "Measuring the waste footprint of cities in Japan: an interregional waste input–output analysis," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-24, December.
    18. Claudia Schilkowski & Manish Shukla & Sonal Choudhary, 2020. "Quantifying the circularity of regional industrial waste across multi-channel enterprises," Annals of Operations Research, Springer, vol. 290(1), pages 385-408, July.
    19. Eduardo Cejuela & Vicente Negro & Jose María Del Campo & Mario Martín-Antón & M. Dolores Esteban & Jose Santos López-Gutiérrez, 2018. "Recent History, Types, and Future of Modern Caisson Technology: The Way to More Sustainable Practices," Sustainability, MDPI, vol. 10(11), pages 1-30, October.
    20. Zheng, Shuxian & Zhou, Xuanru & Tan, Zhanglu & Liu, Chan & Hu, Han & Yuan, Hui & Peng, Shengnan & Cai, Xiaomei, 2023. "Assessment of the global energy transition: Based on trade embodied energy analysis," Energy, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ulb:ulbeco:2013/278528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Pauwels (email available below). General contact details of provider: https://edirc.repec.org/data/ecsulbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.