IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v118y2018icp870-878.html
   My bibliography  Save this article

Sustainability assessment of synfuels from biomass or coal: An insight on the economic and ecological burdens

Author

Listed:
  • Yang, Shiying
  • Yang, Yucheng
  • Kankala, Ranjith Kumar
  • Li, Baoxia

Abstract

Biomass-to-Liquid (BTL) and Coal-to-Liquid (CTL) Synfuels have been the two most significant alternatives for the transportation liquid fuels. But their performance in resource depletion, economic investment, and environmental impacts differs greatly from the conventional refinery. For comparing the strengths and the weakness of each alternative, a quantitative trade-off procedure is required. However, a few researches have discussed such trade-off procedures. In this paper, the life cycle inventories, production cost, and Ecological Cumulative Exergy Consumption (ECEC) of BTL and CTL in China are investigated to compare the pros and cons of each Synfuel. Herewith, the ECEC is taken as a metric for the ecological burden, providing a significant way to integrate the life cycle resource, economic, and environmental factors of Synfuels for the sustainability assessments. The results demonstrated that the shifting of petroleum to BTL reduced the CO2 emission by 98% but relatively increased the water consumption and wastewater. The production cost-breakeven crude oil price with BTL is about 98 $/bbl without considering the taxes, and it could be decreased to 50 $/bbl according to China's tax policy. More importantly, BTL could cut as high as 65% of the overall ecological burden so that would be much more beneficial to the sustainable development of the fuel industry. On the other hand, the economic effectiveness of CTL is relatively reliable, where its production cost-breakeven crude oil price is below 70 $/bbl. However, 10.7 t of CO2 are created for each tonne of CTL, which is 3.3 times to conventional petroleum, and three times of water is consumed in the whole. The ECEC analysis also indicates that the shifting of crude oil to coal for transportation fuels will almost double the overall ecological burden and pose threats to the safety and sustainability of the entire fuel industry at which the cautions should be paid.

Suggested Citation

  • Yang, Shiying & Yang, Yucheng & Kankala, Ranjith Kumar & Li, Baoxia, 2018. "Sustainability assessment of synfuels from biomass or coal: An insight on the economic and ecological burdens," Renewable Energy, Elsevier, vol. 118(C), pages 870-878.
  • Handle: RePEc:eee:renene:v:118:y:2018:i:c:p:870-878
    DOI: 10.1016/j.renene.2017.11.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117311746
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.11.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    2. Ou, Xunmin & Xiaoyu, Yan & Zhang, Xiliang, 2011. "Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China," Applied Energy, Elsevier, vol. 88(1), pages 289-297, January.
    3. Man, Yi & Yang, Siyu & Zhang, Jun & Qian, Yu, 2014. "Conceptual design of coke-oven gas assisted coal to olefins process for high energy efficiency and low CO2 emission," Applied Energy, Elsevier, vol. 133(C), pages 197-205.
    4. Yang, Z.F. & Jiang, M.M. & Chen, B. & Zhou, J.B. & Chen, G.Q. & Li, S.C., 2010. "Solar emergy evaluation for Chinese economy," Energy Policy, Elsevier, vol. 38(2), pages 875-886, February.
    5. Brown, Mark T. & Ulgiati, Sergio, 2010. "Updated evaluation of exergy and emergy driving the geobiosphere: A review and refinement of the emergy baseline," Ecological Modelling, Elsevier, vol. 221(20), pages 2501-2508.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Qiongyin & Xiao, Jun & Hao, Jingwen, 2023. "Cumulative exergy analysis of lignocellulosic biomass to bio-jet fuel through aqueous-phase conversion with different lignin conversion pathways," Energy, Elsevier, vol. 265(C).
    2. Stolecka, Katarzyna & Rusin, Andrzej, 2020. "Analysis of hazards related to syngas production and transport," Renewable Energy, Elsevier, vol. 146(C), pages 2535-2555.
    3. Raghava Rao Kommalapati & Iqbal Hossan & Venkata Sai Vamsi Botlaguduru & Hongbo Du & Ziaul Huque, 2018. "Life Cycle Environmental Impact of Biomass Co-Firing with Coal at a Power Plant in the Greater Houston Area," Sustainability, MDPI, vol. 10(7), pages 1-18, June.
    4. Feng, Yong-qiang & Zhang, Fei-yang & Xu, Jing-wei & He, Zhi-xia & Zhang, Qiang & Xu, Kang-jing, 2023. "Parametric analysis and multi-objective optimization of biomass-fired organic Rankine cycle system combined heat and power under three operation strategies," Renewable Energy, Elsevier, vol. 208(C), pages 431-449.
    5. Ren, Siyue & Feng, Xiao & Yang, Minbo, 2022. "Cumulative solar exergy allocation in heat and electricity cogeneration systems," Energy, Elsevier, vol. 254(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lou, Bo & Ulgiati, Sergio, 2013. "Identifying the environmental support and constraints to the Chinese economic growth—An application of the Emergy Accounting method," Energy Policy, Elsevier, vol. 55(C), pages 217-233.
    2. Geng, Yong & Tian, Xu & Sarkis, Joseph & Ulgiati, Sergio, 2017. "China-USA Trade: Indicators for Equitable and Environmentally Balanced Resource Exchange," Ecological Economics, Elsevier, vol. 132(C), pages 245-254.
    3. Jiang, M.M. & Chen, B., 2011. "Integrated urban ecosystem evaluation and modeling based on embodied cosmic exergy," Ecological Modelling, Elsevier, vol. 222(13), pages 2149-2165.
    4. Gengyuan Liu & Mark T. Brown & Marco Casazza, 2017. "Enhancing the Sustainability Narrative through a Deeper Understanding of Sustainable Development Indicators," Sustainability, MDPI, vol. 9(6), pages 1-19, June.
    5. Liu, Xinyu & Liu, Gengyuan & Yang, Zhifeng & Chen, Bin & Ulgiati, Sergio, 2016. "Comparing national environmental and economic performances through emergy sustainability indicators: Moving environmental ethics beyond anthropocentrism toward ecocentrism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1532-1542.
    6. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    7. Canabarro, N.I. & Silva-Ortiz, P. & Nogueira, L.A.H. & Cantarella, H. & Maciel-Filho, R. & Souza, G.M., 2023. "Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    8. Baka, Jennifer & Roland-Holst, David, 2009. "Food or fuel? What European farmers can contribute to Europe's transport energy requirements and the Doha Round," Energy Policy, Elsevier, vol. 37(7), pages 2505-2513, July.
    9. Nguyen, Thu Lan T. & Hermansen, John E. & Mogensen, Lisbeth, 2010. "Fossil energy and GHG saving potentials of pig farming in the EU," Energy Policy, Elsevier, vol. 38(5), pages 2561-2571, May.
    10. Sarah Jansen & William Foster & Gustavo Anríquez & Jorge Ortega, 2021. "Understanding Farm-Level Incentives within the Bioeconomy Framework: Prices, Product Quality, Losses, and Bio-Based Alternatives," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    11. Argueyrolles, Robin & Delzeit, Ruth, 2022. "The interconnections between Fossil Fuel Subsidy Reforms and biofuels," Conference papers 333492, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    12. Aruga, Kentaka, 2011. "非遺伝子組換え大豆とエネルギーの価格関係について [Relationships among the Non-Genetically Modified Soybean and Energy Prices]," MPRA Paper 38186, University Library of Munich, Germany, revised 20 Aug 2011.
    13. Giannetti, B.F. & Ogura, Y. & Bonilla, S.H. & Almeida, C.M.V.B., 2011. "Accounting emergy flows to determine the best production model of a coffee plantation," Energy Policy, Elsevier, vol. 39(11), pages 7399-7407.
    14. Ribeiro, Lauro André & Silva, Patrícia Pereira da, 2013. "Surveying techno-economic indicators of microalgae biofuel technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 89-96.
    15. Gal Hochman & Chrysostomos Tabakis, 2020. "Biofuels and Their Potential in South Korea," Sustainability, MDPI, vol. 12(17), pages 1-17, September.
    16. Mohlin, Kristina & Camuzeaux, Jonathan R. & Muller, Adrian & Schneider, Marius & Wagner, Gernot, 2018. "Factoring in the forgotten role of renewables in CO2 emission trends using decomposition analysis," Energy Policy, Elsevier, vol. 116(C), pages 290-296.
    17. Khoo, Hsien H., 2015. "Review of bio-conversion pathways of lignocellulose-to-ethanol: Sustainability assessment based on land footprint projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 100-119.
    18. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    19. Fung, Timothy K.F. & Choi, Doo Hun & Scheufele, Dietram A. & Shaw, Bret R., 2014. "Public opinion about biofuels: The interplay between party identification and risk/benefit perception," Energy Policy, Elsevier, vol. 73(C), pages 344-355.
    20. Stefan Mann, 2016. "Governing complementary responsibility goods through hybrid systems in a globalizing world," Journal of Socio-Economics in Agriculture (Until 2015: Yearbook of Socioeconomics in Agriculture), Swiss Society for Agricultural Economics and Rural Sociology, vol. 9(1), pages 14-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:118:y:2018:i:c:p:870-878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.