IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v113y2017icp1208-1214.html
   My bibliography  Save this article

Characteristics of spent coffee ground as a fuel and combustion test in a small boiler (6.5 kW)

Author

Listed:
  • Kang, Sae Byul
  • Oh, Hong Young
  • Kim, Jong Jin
  • Choi, Kyu Sung

Abstract

Spent Coffee Ground is a residue of coffee drink mainly used at a coffee shop. Spent coffee ground is used as an odor removal, manure in flowerpot and so on. However most of spent coffee ground is discarded as garbage. In this study, we investigated characteristics of spent coffee ground as a fuel and combustion characteristics in a small boiler system (6.5 kW based on input lower heating value), such as CO, NOx, O2 and heating characteristic of heating boiler. Drying of spent coffee ground in the open air condition takes less than 6 days in case of height of 11 mm. More than 96% of spend coffee ground is between 100 and 500 μm in particle size. Lower heating value of spent coffee ground used as fuel is about 18.8 MJ/kg (4500 kcal/kg at water content 10%). Combustion chamber of the boiler is a crucible type with primary and secondary air supply and heat exchanger is one through type. Spent coffee ground consumption as a fuel of the boiler is about 1.17 kg/hr. O2 concentration of the flue gas of the boiler is about 17.8% which is higher than a commercial domestic gas boiler or a domestic wood pellet boiler. CO and NOx concentration are 643 and 163 ppm respectively.

Suggested Citation

  • Kang, Sae Byul & Oh, Hong Young & Kim, Jong Jin & Choi, Kyu Sung, 2017. "Characteristics of spent coffee ground as a fuel and combustion test in a small boiler (6.5 kW)," Renewable Energy, Elsevier, vol. 113(C), pages 1208-1214.
  • Handle: RePEc:eee:renene:v:113:y:2017:i:c:p:1208-1214
    DOI: 10.1016/j.renene.2017.06.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117305967
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.06.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. María E. Arce & Ángeles Saavedra & José L. Míguez & Enrique Granada & Antón Cacabelos, 2013. "Biomass Fuel and Combustion Conditions Selection in a Fixed Bed Combustor," Energies, MDPI, vol. 6(11), pages 1-17, November.
    2. Farzad Moradian & Anita Pettersson & Solvie Herstad Svärd & Tobias Richards, 2013. "Co-Combustion of Animal Waste in a Commercial Waste-to-Energy BFB Boiler," Energies, MDPI, vol. 6(12), pages 1-18, November.
    3. Moran, J.C. & Miguez, J.L. & Porteiro, J. & Patiño, D. & Granada, E. & Collazo, J., 2009. "Study of the feasibility of mixing Refuse Derived Fuels with wood pellets through the grey and Fuzzy theory," Renewable Energy, Elsevier, vol. 34(12), pages 2607-2612.
    4. Rabaçal, M. & Fernandes, U. & Costa, M., 2013. "Combustion and emission characteristics of a domestic boiler fired with pellets of pine, industrial wood wastes and peach stones," Renewable Energy, Elsevier, vol. 51(C), pages 220-226.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Magdalena Dołżyńska & Sławomir Obidziński & Małgorzata Kowczyk-Sadowy & Małgorzata Krasowska, 2019. "Densification and Combustion of Cherry Stones," Energies, MDPI, vol. 12(16), pages 1-15, August.
    2. Radovan Nosek & Maw Maw Tun & Dagmar Juchelkova, 2020. "Energy Utilization of Spent Coffee Grounds in the Form of Pellets," Energies, MDPI, vol. 13(5), pages 1-8, March.
    3. Jiseok Hong & Changwon Chae & Hyunjoong Kim & Hyeokjun Kwon & Jisu Kim & Ijung Kim, 2023. "Investigation to Enhance Solid Fuel Quality in Torrefaction of Cow Manure," Energies, MDPI, vol. 16(11), pages 1-13, June.
    4. Mendoza Martinez, Clara Lisseth & Saari, Jussi & Melo, Yara & Cardoso, Marcelo & de Almeida, Gustavo Matheus & Vakkilainen, Esa, 2021. "Evaluation of thermochemical routes for the valorization of solid coffee residues to produce biofuels: A Brazilian case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Lasek, Janusz A. & Matuszek, Katarzyna & Hrycko, Piotr & Głód, Krzysztof & Li, Yueh-Heng, 2023. "The combustion of torrefied biomass in commercial-scale domestic boilers," Renewable Energy, Elsevier, vol. 216(C).
    6. Diana L. Tinoco Caicedo & Myrian Santos Torres & Medelyne Mero-Benavides & Oscar Patiño Lopez & Alexis Lozano Medina & Ana M. Blanco Marigorta, 2023. "Simulation and Exergoeconomic Analysis of a Trigeneration System Based on Biofuels from Spent Coffee Grounds," Energies, MDPI, vol. 16(4), pages 1-17, February.
    7. Anna Brunerová & Hynek Roubík & Milan Brožek & Agus Haryanto & Udin Hasanudin & Dewi Agustina Iryani & David Herák, 2019. "Valorization of Bio-Briquette Fuel by Using Spent Coffee Ground as an External Additive," Energies, MDPI, vol. 13(1), pages 1-15, December.
    8. A. E. Atabani & Eyas Mahmoud & Muhammed Aslam & Salman Raza Naqvi & Dagmar Juchelková & Shashi Kant Bhatia & Irfan Anjum Badruddin & T. M. Yunus Khan & Anh Tuan Hoang & Petr Palacky, 2023. "Emerging potential of spent coffee ground valorization for fuel pellet production in a biorefinery," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7585-7623, August.
    9. Chen, Ying-Chu & Jhou, Sih-Yu, 2020. "Integrating spent coffee grounds and silver skin as biofuels using torrefaction," Renewable Energy, Elsevier, vol. 148(C), pages 275-283.
    10. Manrique, Raiza & Vásquez, Daniela & Chejne, Farid & Pinzón, Andrea, 2020. "Energy analysis of a proposed hybrid solar–biomass coffee bean drying system," Energy, Elsevier, vol. 202(C).
    11. Lachman, Jakub & Lisý, Martin & Baláš, Marek & Matúš, Miloš & Lisá, Hana & Milčák, Pavel, 2022. "Spent coffee grounds and wood co-firing: Fuel preparation, properties, thermal decomposition, and emissions," Renewable Energy, Elsevier, vol. 193(C), pages 464-474.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena Arce, María & Saavedra, Ángeles & Míguez, José L. & Granada, Enrique, 2015. "The use of grey-based methods in multi-criteria decision analysis for the evaluation of sustainable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 924-932.
    2. Radovan Nosek & Maw Maw Tun & Dagmar Juchelkova, 2020. "Energy Utilization of Spent Coffee Grounds in the Form of Pellets," Energies, MDPI, vol. 13(5), pages 1-8, March.
    3. Sae Byul Kang & Bong Suk Sim & Jong Jin Kim, 2017. "Volume and Mass Measurement of a Burning Wood Pellet by Image Processing," Energies, MDPI, vol. 10(5), pages 1-13, May.
    4. Kraiem, Nesrine & Jeguirim, Mejdi & Limousy, Lionel & Lajili, Marzouk & Dorge, Sophie & Michelin, Laure & Said, Rachid, 2014. "Impregnation of olive mill wastewater on dry biomasses: Impact on chemical properties and combustion performances," Energy, Elsevier, vol. 78(C), pages 479-489.
    5. Sungur, Bilal & Basar, Cem & Kaleli, Alirıza, 2023. "Multi-objective optimisation of the emission parameters and efficiency of pellet stove at different supply airflow positions based on machine learning approach," Energy, Elsevier, vol. 278(PA).
    6. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    7. Lelis Gonzaga Fraga & João Silva & José Carlos Teixeira & Manuel E. C. Ferreira & Senhorinha F. Teixeira & Cândida Vilarinho & Maria Margarida Gonçalves, 2022. "Study of Mass Loss and Elemental Analysis of Pine Wood Pellets in a Small-Scale Reactor," Energies, MDPI, vol. 15(14), pages 1-15, July.
    8. Kamil Witaszek & Marcin Herkowiak & Agnieszka A. Pilarska & Wojciech Czekała, 2022. "Methods of Handling the Cup Plant ( Silphium perfoliatum L.) for Energy Production," Energies, MDPI, vol. 15(5), pages 1-20, March.
    9. Carlon, Elisa & Verma, Vijay Kumar & Schwarz, Markus & Golicza, Laszlo & Prada, Alessandro & Baratieri, Marco & Haslinger, Walter & Schmidl, Christoph, 2015. "Experimental validation of a thermodynamic boiler model under steady state and dynamic conditions," Applied Energy, Elsevier, vol. 138(C), pages 505-516.
    10. Liu, Hui & Liu, Jingyong & Huang, Hongyi & Evrendilek, Fatih & Wen, Shaoting & Li, Weixin, 2021. "Optimizing bioenergy and by-product outputs from durian shell pyrolysis," Renewable Energy, Elsevier, vol. 164(C), pages 407-418.
    11. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    12. Andrzej Greinert & Maria Mrówczyńska & Radosław Grech & Wojciech Szefner, 2020. "The Use of Plant Biomass Pellets for Energy Production by Combustion in Dedicated Furnaces," Energies, MDPI, vol. 13(2), pages 1-17, January.
    13. Cheng, Wei & Shao, Jing'ai & Zhu, Youjian & Zhang, Wennan & Jiang, Hao & Hu, Junhao & Zhang, Xiong & Yang, Haiping & Chen, Hanping, 2022. "Effect of oxidative torrefaction on particulate matter emission from agricultural biomass pellet combustion in comparison with non-oxidative torrefaction," Renewable Energy, Elsevier, vol. 189(C), pages 39-51.
    14. Hu, Wanhe & Feng, Zixing & Yang, Jianfei & Gao, Qi & Ni, Liangmeng & Hou, Yanmei & He, Yuyu & Liu, Zhijia, 2021. "Combustion behaviors of molded bamboo charcoal: Influence of pyrolysis temperatures," Energy, Elsevier, vol. 226(C).
    15. Vicente, E.D. & Vicente, A.M. & Evtyugina, M. & Tarelho, L.A.C. & Almeida, S.M. & Alves, C., 2020. "Emissions from residential combustion of certified and uncertified pellets," Renewable Energy, Elsevier, vol. 161(C), pages 1059-1071.
    16. Libiao Bai & Hailing Wang & Chunming Shi & Qiang Du & Yi Li, 2017. "Assessment of SIP Buildings for Sustainable Development in Rural China Using AHP-Grey Correlation Analysis," IJERPH, MDPI, vol. 14(11), pages 1-12, October.
    17. Richter, Joseph P. & Weisberger, Joshua M. & Mollendorf, Joseph C. & DesJardin, Paul E., 2017. "Emissions from a domestic two-stage wood-fired hydronic heater: Effects of non-homogeneous fuel decomposition," Renewable Energy, Elsevier, vol. 112(C), pages 187-196.
    18. Patel, Madhumita & Zhang, Xiaolei & Kumar, Amit, 2016. "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1486-1499.
    19. Algirdas Jasinskas & Ramūnas Mieldažys & Eglė Jotautienė & Rolandas Domeika & Edvardas Vaiciukevičius & Marek Marks, 2020. "Technical, Environmental, and Qualitative Assessment of the Oak Waste Processing and Its Usage for Energy Conversion," Sustainability, MDPI, vol. 12(19), pages 1-14, October.
    20. Wendi Chen & Fei Wang & Altaf Hussain Kanhar, 2017. "Sludge Acts as a Catalyst for Coal during the Co-Combustion Process Investigated by Thermogravimetric Analysis," Energies, MDPI, vol. 10(12), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:113:y:2017:i:c:p:1208-1214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.